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Abstract

This paper discusses the allocation of aggregate longevity risk in the
case of perfect insurance markets. We show that the optimal allocation
transfers some risk to the pensioners, even if pension providers have access
to a perfect insurance market. Individuals prefer contributions and benefits
to depend on the evolution of aggregate mortality rates rather than being
fixed. Indeed, this flexibility offers an interesting diversification strategy
where the prospect of a shorter life (e.g. the emergence of new diseases)
implies higher consumption levels and conversely, the prospect of a longer
life (e.g. thanks to medical progress) implies lower consumption levels. The
underlying mechanism only emerges when individuals are temporally risk
averse. We illustrate it with risk-sensitive preferences.
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1 Introduction

Life expectancy changed abruptly in the last century. In many societies, longevity
increased at an unexpected pace while it strongly declined in others due to epidemics
such as AIDS. It is hard to predict the direction, let alone the magnitude, of such
changes in the future. This uncertainty is a major stumbling block when designing
a pension system. In particular, when benefits are fixed, unexpected longevity gains
directly translate into financial losses for pension providers, threatening the sustain-
ability of pension systems. To avoid this outcome, one could use a tontine-like system
where fixed aggregate benefits are divided among survivors. Fluctuations in survival
would not affect aggregate pension payments, thus relieving providers from the aggre-
gate longevity risk (see Milevsky 2015). Pensioners’ incomes, however, would become
highly unpredictable. The optimal design probably lies somewhere between these two
extreme cases, with a sophisticated form risk sharing between pension providers and
participants that relies on flexible levels of contributions and benefits.

The current paper contributes to the debate on the optimal allocation of longevity
risk by exploring the simple case where pension providers can access a perfect insur-
ance market. This assumption simplifies our analysis but does not reflect reality well.
Nonetheless, a good understanding of this simple case is a prerequisite for the de-
velopment of more complex analyses featuring imperfect insurability. We show that
even if pension providers can access fair insurance, individuals retain some aggregate
longevity risk at the optimum. Individuals prefer a system that negatively correlates
pension benefits with life expectancy to one granting them fixed benefits. Such a sys-
tem combines adverse demographic shocks (e.g. a shorter life expectancy triggered
by an epidemic) with improved pension benefits and, conversely, combines improved
longevity prospects with a reduction in benefits. This preference for negative corre-
lation, that is for combining “goods” with “bads”, only emerges under temporal risk
aversion. We illustrate it with risk-sensitive preferences.

First, we develop our argument in a simple three-periods setting, where individuals
die according to exogenous, uncertain probabilities. Importantly, we allow for some
dependency in the evolution of survival probabilities. The information released over
time through the observation of past survival rates thus informs about future survival
prospects and can then be used to establish future pension levels. Our theoretical
model highlights that dynamic adjustments are beneficial, even if pension providers
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can access fair insurance.

Second, we quantify these adjustments, up to an order of magnitude, by calibrating and
numerically solving a multi-period life-cycle model. Our analysis covers both the active
life and retirement, as the aforementioned dynamic adjustments affect contributions as
well as benefits. In line with our theoretical findings, we find that contributions decrease
and benefits increase when survival prospects worsen while contributions increase and
benefits decrease when survival prospects improve. Importantly, these dynamic adjust-
ments of contributions and benefits may relieve pension providers from about half of
the risk of financial losses generated by this aggregate longevity risk, without lowering
individuals’ ex-ante utilities.

Our approach both differs from and complements the vast literature on optimal risk
sharing, and in particular contributions focusing on longevity risk. Most of those
studies emphasize the impossibility of insuring longevity risk. They explore several
mechanisms for allocating the risk across different generations or different types of
agents.1 They take it for granted that the risk allocation would be trivial if the longevity
risk could be insured at no cost. Instead, we emphasize that even in the case of perfect
insurability, determining the optimal risk allocation is non-trivial. This is because life
is an irreplaceable commodity. Hence, the mortality risk cannot be removed by a mere
redistribution of wealth. In other words, pensions become devices for implementing
the best allocation of wealth when agents face a non-insurable mortality risk. As we
will show, the fact that mortality rates are themselves uncertain impacts individuals’
demand for insurance, and therefore the risk allocation at the optimum.

The paper is structured as follows. In Section 2, we introduce the theoretical frame-
work. Section 3 characterizes the optimal pension profile and provides our main find-
ings, which are discussed in depth in Section 4. In Section 5, we numerically quantify
the share of the aggregate longevity risk transferred to individuals. Section 6 concludes.

1Because future generations are not born yet, they cannot share the aggregate longevity risk with
current ones. Gordon and Varian (1988) explore the optimal risk-sharing across generations when a
government has the power to pre-commit future generations. Demange and Laroque (2000) compare
the optimality of two pension systems: Mandatory contributions based on capital and labor income,
and voluntary pay-as-you-go Social security. Bohn (2001) characterizes the risk-sharing property of
four alternative Social security systems, and emphasizes that efficiency requires that all agents in the
economy, including current retirees, share all risks. Krueger and Kubler (2002) suggest that, whenever
financial markets are incomplete, the introduction of Social security in a competitive economy provides
a Pareto-improving allocation of risks between generations. Ball and Mankiw (2007) examine the
optimalit risk-sharing in a fully funded Social security system. If the Social security fund holds safe
debt, they find that, at the optimum, , pension benefits must be negatively indexed to equity returns.

3



2 A simple theoretical model

2.1 Setting

The economy comprises a large number of identical individuals and a single pension
provider. In period 0, individuals are active, consume an exogenous level c0 and face
no risk. They retire at the end of period 0 and rely on retirement benefits for the
remaining two periods. Individuals may die at the end of period 0 (i.e. when reaching
retirement), at the end of period 1, or at the end of period 2. Nobody survives after
period 2. Individuals only derive utility from their own consumption, thus do not
bequeathe.

Individuals face risks at the end of periods 0 and 1, since in both cases they may not
survive until the following period. This standard mortality risk is combined with some
aggregate longevity risk, which reflects an imperfect knowledge of the underlying mor-
tality process. Henceforth, longevity risk refers to the fact that survival probabilities at
the end of period 0 and 1 are themselves uncertain ex-ante. Interestingly, the number of
survivors in period 0 is observed by individuals and pension providers alike at the end
of period 0, hence revealing the actual survival rate at the end of period 0. Moreover,
we assume that individual’s subjective beliefs about their own survival coincide with
the observed aggregate probabilities. The information acquired at the end of period 0
allows updating the probability distribution of the survival rates at the end of period
1. The question we address is how, if at all, this learning should be reflected in future
pensions levels.

Notation Time is discrete, indexed by t ∈ T = {0, 1, 2}. There is a finite set of
states of the world Ω. For each ω ∈ Ω, we denote by pω the probability that the
world is in that state. To any state of the world ω ∈ Ω corresponds a vector of survival
probabilities πω = (πω0 , π

ω
1 ) ∈ [0, 1]2, where πω0 is the probability to survive until the end

of period 0 and πω1 is the probability to survive until the end of period 1, conditionally
on being alive in period 1. Ex-ante, the true state of the world cannot be observed.
However, πω0 is observed at the end of period 0.2 This information leads individuals
and pension providers to update beliefs in a standard Bayesian way. For any ω ∈ Ω,

2As we assume a large homogeneous population the fraction of individuals that survive provides
an exact estimate of the survival probabilities.
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we define pω|πω0 ∈ [0, 1] by:
pω|πω0 =

pω∑
{ω′|πω′0 =πω0 }

pω′
.

This is the probability to be in state ω, when the survival rate observed at the end of
period 0 equals πω0 . We also define π̄1|πω0 ∈ [0, 1] by:

π̄1|πω0 =
∑

{ω′|πω′0 =πω0 }

pω′|πω0 π
ω′

1 .

This is the expected survival rate at the end of period 1, when the mortality rate
observed at the end of period 0 equals πω0 . By the law of iterated expectations, π̄1|πω0

can also be interpreted as the probability that an individual survives until period 2,
conditional on surviving until period 1 and on the past survival rate being πω0 .

Pensions and state-contingent consumption profile A well-designed pension
system should allow its participants to reach the highest possible level of welfare given
a budget constraint. In our setting, there is no utility for bequests. Thus, at the
optimum, individuals do not save (see Davidoff et al. 2005). Searching for the opti-
mal pension system therefore amounts to deriving the optimal consumption pattern.
Moreover, given the uncertain survival rates and sequential learning, the optimal strat-
egy may involve state-contingent consumption processes. These are formalized by a
mapping ω ∈ Ω → (cω1 , c

ω
2 ) ∈ R2

+, where cω1 and cω2 denote the amount consumed by
(living) individuals in periods 1 and 2 in state ω. Such state-contingent consumption
processes must be adapted: Information that is only revealed at the end of a given
period cannot be used to determine the consumption level during that period. Thus,
for any two distinct states (ω, ω′) ∈ Ω2 such that πω0 = πω

′
0 (i.e., states which cannot

be distinguished before the end of period 1) one must have cω1 = cω
′

1 . Moreover, for any
two states (ω, ω′) ∈ Ω2 such that πω0 = πω

′
0 and πω1 = πω

′
1 (i.e., states which cannot be

distinguished before the end of period 2), one must have cω1 = cω
′

1 and cω2 = cω
′

2 . We
denote by C the set of adapted state-contingent consumption processes.

We say that a state-contingent consumption process is deterministic if (cω1 , c
ω
2 ) is in-

dependent of ω, and adaptive if (cω1 , c
ω
2 ) 6= (cω

′
1 , c

ω′
2 ) for some states of the world

(ω, ω′) ∈ Ω2.
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The present value of retirement consumption We assume perfect intertemporal
markets with a discount factor δ. In state ω, a retiree receives her retirement income in
period 1 with probability πω1 and in period 2 with probability πω1 πω2 . Thus, the present
value of retirement consumption in state ω ∈ Ω equals πω1 cω1 + δπω1 π

ω
2 c

ω
2 .

The present value of retirement consumption is uncertain ex-ante, since ω is not known.
Assuming that pension providers can access a perfect insurance market, they care
about the expected cost of providing state contingent consumption (cω1 , c

ω
2 ), that is∑

ω pω(πω1 c
ω
1 + δπω1 π

ω
2 c

ω
2 ).

The diagram below summarizes the timing of life or death occurrences, information
release and consumption.

Figure 1: Timing of life or death, information release and consumption.

2.2 Preferences

We consider individuals endowed with risk sensitive-preferences. Utility is defined
recursively by:

Vt = u(ct)−
β

k
log
(
E
[
e−kVt+1

])
. (1)

These preferences, introduced by Hansen and Sargent (1995), are similar to Epstein-Zin
preferences but feature monotonicity (Bommier et al. 2017). They make it possible to
disentangle ordinal preferences (determined by the instantaneous utility function u and
the time preference parameter β) and risk aversion (driven by the parameter k). The
higher k, the higher risk aversion. The case where k = 0, obtained by taking the limit
k → 0 in (1), corresponds to the standard additive model with exponential discounting.
Most of the literature on life-cycle theory relies on this additive case, assuming temporal
risk neutrality. This is particularly restrictive. Consider for example the following two
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lotteries in an infinite horizon setting:

LA →

(c, c, c, c, · · · ) with prob. 1
2

(C,C,C,C, · · · ) with prob. 1
2

and LB →

(c, C, c, C, · · · ) with prob. 1
2

(C, c, C, c, · · · ) with prob. 1
2

where c and C are consumption levels with c < C. When k = 0, the individual is
indifferent between both lotteries. Intuitively, however, lottery LB is less risky than
lottery LA, since instead of delivering the worst outcome (c, c, c, · · · ) or the the best
outcome (C,C,C,C, · · · ) with equal probabilities, lottery LB delivers the intermediate
outcomes (c, C, c, C, · · · ) and (C, c, C, c, · · · ) with equal probabilities. When k > 0,
LB is preferred to LA. This reflects a willingness to combine “goods” with “bads” (see
Epstein and Tanny 1980 and Eeckhoudt et al. 2007).3

Additionally, recursive preferences imply non-trivial preferences for the timing of the
resolution of uncertainty (Kreps and Porteus 1978). In the case of risk-sensitive prefer-
ences, individuals prefer an early resolution of uncertainty when k > 0 and β < 1, and
are indifferent to the timing of the resolution of uncertainty when k = 0 or β = 1.4

Risk-sensitive preferences are most often used to model infinitely long-lived individuals.
Yet, they are also relevant when individuals have a finite but possibly uncertain horizon.
Bommier (2014) first applied risk-sensitive preferences in a context of uncertain lifetime.
A wider theoretical discussion is provided Bommier et al. (2017). In practice, denote by
Ut the lifetime utility at time t conditionally on being alive at time t, and normalize the
utility of being dead to 0. The individuals’ ex-ante utility U0 is computed inductively
using equation (1) and accounting for the survival probabilities in period t+1. Applying
it to our three-period model, we obtain that a state-contingent survival profile (πω0 , π

ω
1 )

3The temporally risk-neutral case where k = 0 is not supported by evidence (see Coble and Lusk
2010, Abdellaoui et al. 2013 or Leroux et al. 2016). In an experiment, Andersen et al. (2018) present
subjects with a series of choices between lotteries such as LA and LB and find evidence of temporal
risk aversion. Cheung (2015) and Miao and Zhong (2015) also reports evidence of a preference for a
so-called “intertemporal diversification” motive.

4The case where β = 1 corresponds to the multiplicative model studied in Bommier (2013).
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and an adapted consumption process (cω1 , c
ω
2 ) provide the utility U0 given by:

U0 = u (c0)− β

k
log

{∑
ω∈Ω

pω
[
πω0 e

−kUω1 + (1− πω0 )
]}

, (2)

Uω
1 = u (cω1 )− β

k
log

 ∑
{ω′|πω′0 =πω0 }

pω′|πω0

[
πω
′

1 e
−kUω′2 +

(
1− πω′1

)] , (3)

Uω
2 = u (cω2 ) . (4)

Henceforth, we assume the instantaneous utility function u to be increasing and con-
cave. Moreover, to avoid possible corner solutions, we assume that limc→0 u

′(c) = +∞.
The parameter β reflecting pure time preference is assumed to take values in (0, 1],
while the risk aversion parameter k is constrained to be non-negative.

3 Optimal pension systems

We assume that pension providers have access to a perfect insurance market. Hence,
the optimization problem is the following:

max
{(cω1 ,cω2 )}ω∈Ω∈C

U0

s.t.
∑
ω

pω(πω0 c
ω
1 + δπω1 π

ω
2 c

ω
2 ) ≤ B

where B is the endowment of the pension provider. In this theoretical part, we assume
that B is an exogenous constant.

3.1 First-order conditions

Because risk-sensitive preferences are convex, we address the problem by solving its
first-order conditions. We show in Appendix A that these first-order conditions write
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as follows: There exist µ ∈ R+ such that for all ω ∈ Ω :

e−kU
ω
1 u′ (cω1 ) = µ (5)

βe−
k
β
u(cω1 )e−ku(c

ω
2 )u′ (cω2 ) ek

1−β
β
Uω1 = µδ. (6)

Before proceeding further, we introduce a technical result that will prove useful later
on. It relies on the notion of comonotonicity, defined as follows. We say that two
real-valued processes {xω} and {yω} are strictly comonotone if, for all (ω, ω′) ∈ Ω2

one has xω > xω
′ ⇔ yω > yω

′ . Strict anti-comonotonicity corresponds to to xω >

xω
′ ⇔ yω < yω

′ . Note that if {xω} and {yω} are both strictly comonotone and strictly
anti-comonotone, then they must be constant (i.e. xω and yω must be independent of
ω). The first-order conditions (5) and (6) yield the following property:

Lemma 1. The optimal state-contingent consumption profile is such that {cω1 } and
{cω2 } are strictly anti-comonotone.

Proof. Combining (5) and (6) one gets:

βe−ku(c
ω
2 )u′ (cω2 ) = µ

1
β δe

k
β
u(cω1 ) (u′(cω1 ))

β−1
β . (7)

Anti-comonotonicity directly follows from the monotonicity and concavity of u, and
from k ≥ 0 and β ≤ 1.

3.2 Information and adapted consumption profiles

This section explores whether and how an optimal pension system should react to the
incremental receipt of information about survival rates. A first result indicates that
the information revealed at the beginning of the last period has no instrumental value.

Proposition 1. The optimal pension profile does not use the information revealed at
the end of period 1. Formally for any two states (ω, ω′) ∈ Ω2 which are indistinguishable
before the end of period 1 (i.e. states such that πω0 = πω

′
0 ) one must have (cω1 , c

ω
2 ) =

(cω
′

1 , c
ω′
2 ).

Proof. Assume that πω0 = πω
′

0 . Because (cω1 , c
ω
2 ) is an adapted consumption process,

cω1 = cω
′

1 . Then, cω′2 = cω2 directly follows from equation (7).
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For consequentialist individuals, there is no value in learning about past realizations
when all uncertainty has resolved. Here, all uncertainty resolves at the end of period
1 (see Figure 1). In period 2, either the individual is already dead, or she knows
that she has exactly one period left to live. In both cases (whether she is dead or
alive), she obtains a utility that is independent of π̄1|πω0 , meaning that period 2 utility
is state-independent. It is well known from Borch (1960) that if utilities are state-
independent and if there exists a risk-neutral agent, then, at the optimum, the risk-
neutral agent should bear all the risk in the economy. Thus, pension providers cover
all the uncertainty about πω1 that is only revealed at the end of period 1.

Proposition 1 bears on the choice of cω2 . If we turn to the choice of cω1 , the argument
of state-independence also applies in the case where π̄1|πω0 is independent of πω0 . That
is when observing πω0 does not inform about future survival probabilities. Here again,
risk neutral agents bears all risks:

Proposition 2. Assume that for any (ω, ω′) ∈ Ω2 one has π̄1|πω0 = π̄1|πω′0
. Then

(cω1 , c
ω
2 ) must be independent from ω.

Proof. As a consequence of Proposition 1, one has:

Uω
1 = u (cω1 )− β

k
log
{
e−ku(c

ω
2 )π̄1|πω0 +

(
1− π̄1|πω0

)}
. (8)

Combining (5) and (6) we have:

e−
k
β (Uω1 −u(cω1 )) =

βδ−1e−ku(c
ω
2 )u′ (cω2 )

u′ (cω1 )
. (9)

From (8) and (9) one derives:

u′ (cω1 ) =
βδ−1u′ (cω2 )

π̄1|πω0 +
(
1− π̄1|πω0

)
eku(c

ω
2 )

(10)

Since we assumed π̄1|πω0 to be independent of ω, we conclude from (10) that {cω1 } and
{cω2 } are strictly co-monotone. Given that {cω1 } and {cω2 } are also anti-comonotone
(Lemma 1), both cω1 and cω2 must be independent of ω.

Of course, assuming that π̄1|πω0 is independent of πω0 is extremely restrictive. More
realistically, one may believe that a favorable outcome in terms of survival at the end
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of period 0 reflects the impact of, say, medical progress. Medical progress will also
improve survival rates in future periods. All popular stochastic mortality models allow
for such dependency between survival rates.

If survival rates in different periods are not independently distributed, some useful
information is revealed at the end of period 0 and the utility function in period 1 is
state-dependent. Formally this is reflected in equation (8) where Uω

1 may depend on
πω0 . Therefore, we expect that the result of Proposition 2 may not extend to such a
setting. This actually depends on whether individuals are temporally risk averse or
not (i.e., whether k > 0 or k = 0). First let us consider the case where k = 0, which
corresponds to the standard time-additive model of Yaari (1965).

Proposition 3. If k = 0, then (cω1 , c
ω
2 ) must be independent from ω.

Proof. If k = 0, the first-order conditions write u′ (cω1 ) = µ and βu′ (cω2 ) = µδ, directly
implying that (cω1 , c

ω
2 ) must be independent from ω.

When π̄1|πω0 depends on ω, then the utility Uω
1 depends on πω0 . However, under temporal

risk-neutrality, that is k = 0, the state-dependence takes an additive form. In this case,
the risk-neutral agent takes all the risk.

We now turn to the case of temporal risk aversion, or k > 0, which leads to the
main result of this theory part. We find that temporal risk aversion implies specific
co-movements of consumption and aggregate survival probabilities:

Proposition 4. Assume k > 0 and that the optimal profile is such that u (cω2 ) > 0 for
all ω ∈ Ω.5 Then:

π̄1|πω0 > π̄1|πω′0
⇔
(
cω1 < cω

′

1 and cω2 > cω
′

2

)
.

Proof. Assume that π̄1|πω0 > π̄1|πω′0
and cω2 ≤ cω

′
2 for some (ω, ω′) ∈ Ω2. From (10)

we obtain u′(cω1 ) > u′(cω
′

1 ) and therefore cω1 < cω
′

1 . This is inconsistent with the anti-
comononicity of {cω1 } and {cω2 } established in Lemma 1. Thus if π̄1|πω0 > π̄1|πω′0

one
must have cω2 > cω

′
2 , and due to the anti-comonotonicity property mentioned above,

cω1 < cω
′

1 .
5The inequality u (cω2 ) > 0 simply means that the individual is better off being alive and consuming

cω2 than being dead.
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Proposition 4 indicates that temporally risk averse individuals who interact with a
risk-neutral pension provider voluntarily accept some of the aggregate longevity risks.
The following section further clarifies the findings of Proposition 4. The numerical
simulation provided in Section 5 illustrates this phenomenon in a multi-period model.
It provides an order of magnitude of the effects at play when assuming realistic demo-
graphic uncertainty.

4 Underlying intuitions

Proposition 4 indicates that improved prospects of future survival lead to a lower
pension in period 1 and a higher one in period 2. Conversely, lower survival prospects
imply a higher pension in period 1 and a lower one in period 2. This results from
the combination of three non-trivial effects that we now describe. In order to provide
an intuitive understanding, we first discuss what would be obtained in constrained
problems where consumption in one or the other period is exogenously fixed (Sections
4.1 and 4.2). We return to the unconstrained case in Section 4.3.

4.1 Temporal risk aversion

Assume here that consumption in period 2 is exogenously fixed to some level c?2. Then,
optimization is only a matter of choosing {cω1 }. If cω2 = c?2 for all ω ∈ Ω and u (c?2) > 0,
then an improvement in the probability of surviving to period 2, π̄1|πω0 , translates into a
higher lifetime utility Uω

1 . Because temporally risk averse individuals prefer to combine
“goods” with “bads”, they prefer a system where cω1 and π̄1|πω0 move in opposite directions
to a system where survival probabilities and consumption are independent. Formally,
this constrained problem yields the first-order condition (5) with cω2 replaced by c?2.
This directly implies that if k > 0, then π̄1|πω0 > π̄1|πω′0

⇒ cω1 < cω
′

1 for any (ω, ω′) ∈ Ω2.
In words, πω0 and cω1 are strictly anti-comonotone.

4.2 Preference for early resolution of uncertainty

We now turn to the case where consumption in period 1 equals some exogenous level c?1.
Then, optimization is only a matter of choosing {cω2 }. Despite an apparent similarity
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with the constrained problem discussed above, choosing {cω2 } while consumption in
period 1 is fixed is a rather different issue. Indeed, consumption in period 2 only
provides utility when the individual is alive in the second period. Yet, once it is known
that she is alive in period 2, the information about π̄1|πω0 is irrelevant. In fact, if
π̄1|πω0 were only revealed at the end of period 1 (e.g. because of delays in building
mortality statistics), we would be in the case discussed in Proposition 1, with cω2 being
independent of π̄1|πω0 .

In our setting, one learns πω0 at the end of the period 0. For individuals with a strict
preference for early resolution of uncertainty (when k > 0 and β < 1), the timing of
the information release matters. In particular, the earlier they obtain information, the
higher their tolerance for risks on lifetime utility. In the case at hand, this greater
risk tolerance leads to allocating more resources (i.e. higher cω2 ) to good states (i.e.
those with a high π̄1|πω0 ) when π̄1|πω0 is revealed at the end of period 0, compared to
when π̄1|πω0 is revealed at the end of period 1. Recall, however, that in the case where
uncertainty would resolve at the end of period 1, cω2 would be independent of ω. Thus,
when uncertainty resolves at the end of period 0, the willingness to put more resources
on good states eventually leads to choosing large values cω2 when π̄1|πω0 is high and low
values cω2 when π̄1|πω0 is low.

Formal mathematical resolution confirms this intuition. This constrained problem
yields the first-order condition (6), with cω1 replaced by c?1. This directly implies the
strict comonotonicity of cω2 and π̄1|πω0 when k > 0 and β < 1. Moreover, note that,
if k = 0 or β = 1 in this constrained problem, then equation (6) indicates that cω2
should be independent of π̄1|πω0 , thus deterministic. This is consistent with the fact
that k = 0 or β = 1 implies indifference to the timing of the resolution of uncertainty,
which cancels the effect we just discussed.

4.3 Impatience

The two constrained problems above help explain why we expect cω1 and π̄1|πω0 to be
anti-comonotone as a consequence of temporal risk aversion, and cω2 and π̄1|πω0 to be
comonotone as a consequence of a preference for an early resolution of uncertainty.
In fact, these two effects are amplified by a third one that only emerges when {cω1 }
and {cω2 } are chosen jointly. Indeed, temporal risk aversion amplifies the effect of
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lifetime uncertainty on impatience, as discussed further in Bommier et al. (2017).
Consequently, when k > 0, individuals with low mortality prospects choose less steeply
decreasing (or more steeply increasing) consumption paths than individuals with high
mortality prospects. Therefore, this impatience effect leads to a lower first-period con-
sumption cω1 and a higher second-period consumption cω2 when π̄1|πω0 is high than when
it is low. Impatience thus reinforces the two effects discussed above. This holds true
even in the presence of a perfect insurance market. In particular, note that Proposition
4 covers the case where β = 1. Although there is no preference for early resolution of
uncertainty when β = 1, so that the effect discussed in Section 4.2 vanishes, we find
that cω2 and π̄1|πω0 remain comonotone. This is due to impatience.

Table 1 below summarizes the joint movements of consumption in periods 1 and 2, cω1
and cω2 , when the outcome at the end of period 0 predicts an increase in survival in
the following period.

Effects Temporal risk
aversion

Preference for
the timing of
information

release

Impatience Combined
effects

cω1 ↘ ↘ ↘
cω2 ↗ ↗ ↗

Holds when k > 0 k > 0 and β < 1 k > 0 k > 0 and β ≤ 1

Discussed in Section 4.1 Section 4.2 Section 4.3 Proposition 4

Table 1: Impact of positive news regarding π̄1|πω0 .

5 A calibrated multi-period model

In this section, we assess the order of magnitude of the variations in consumption dis-
cussed above. We calibrate and numerically solve a multi-period life-cycle model with a
realistic dynamics of survival rates and temporal risk aversion. It covers the active life
and retirement. Indeed, to the extent that the aggregate mortality rates experienced
during one’s active life inform about one’s future life expectancy, contributions as well
as benefits will vary across states of the world at the optimum.

We describe the optimization program in the multi-period setup in Section 5.1. We
explain how to solve and calibrate it in Sections 5.2 and 5.3. We discuss our numerical
results in Section 5.4. We proceed to a sensitivity analysis in Section 5.5.
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5.1 The life-cycle setup

Individuals are active from period 0 until retirement in period Tret. They can live up
to period T at most, and may die in any period between 0 and T . Let T = {0, . . . , T}.
For each ω in a set Ω of possible states of the world, pω denotes the probability that
the world will be in that state. To any state of the world ω ∈ Ω corresponds a vector
πω = {πωt }t∈T ∈ [0, 1]T of survival probabilities and an adapted consumption process
cω = {cωt }t∈T . For any state ω ∈ Ω, πωt denotes the probability of surviving to the end
of period t, conditionally on being alive at the end of period t− 1. For any t ∈ T and
any ω ∈ Ω, we define pω|πω0 ,...,πωt ∈ [0, 1] by

pω|πω0 ,...,πωt−1
=

pω∑
{ω′|πω′0 ,...,πω

′
t−1=πω0 ,...,π

ω
t−1}

pω′
.

This is the probability to be in state ω, conditionally on observing survival rates equal
to πω0 , . . . , πωt−1 up to the end of period t. Let us recall that information revealed at the
end of a given period cannot be used to determine the consumption level during that
period. Hence, for any two states (ω, ω′) ∈ Ω2 such that πω0 , . . . , πωt−1 = πω

′
0 , . . . , π

ω′
t−1,

that is states which cannot be distinguished before the end of period t, one must have
cω1 , . . . , c

ω
t = cω

′
1 , . . . , c

ω′
t . Denote by Uω

t the lifetime utility at time t conditionally
on being alive at time t in state ω and normalize the utility of being dead to 0. A
state-contingent survival profile {πωt }t∈T and an adapted consumption process {cωt }t∈T
provide the utility given by the end point U0 of the following backward induction:

Uω
T = u (cωT ) , (11)

and for all t ≤ T − 1,

Uω
t = u (cωt )− β

k
log

 ∑
{ω′|πω′0 ,...,πω

′
t−1=πω0 ,...,π

ω
t−1}

pω′|πω′0 ,...,πω
′

t−1

[
πω
′

t e
−kUω′t+1 +

(
1− πω′t

)] .

(12)
Pensions are assumed to be the sole source of income during retirement. Individuals
earn an exogenous income {It}0≤t<Tret when active, and rely on their pension after
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retirement. We assume the pension system to be actuarially fair so that:

∑
ω∈Ω

T∑
t=0

pωδ
t

(
t−1∏
τ=0

πωτ

)
cωt ≤

∑
ω∈Ω

Tret−1∑
t=0

pωδ
t

(
t−1∏
τ=0

πωτ

)
It = B. (13)

Contributions in the active life are simply the difference between income and consump-
tion, It − cωt . Pension benefits, when retired, equal cωt .

5.2 Solving the extended model

The optimization problem is the following:

max
{cωt }∈C

U0

s.t.
∑

ω∈Ω

∑
t∈T pω

(
Πt−1
τ=0π

ω
τ

)
δtcωt ≤ B

(14)

where by convention Π−1
τ=0 = 1.

5.2.1 First-order conditions

Risk-sensitive preferences being recursive, we can solve the optimization problem using
Bellman’s principle of dynamic optimality. Formally, for any t ∈ T and ω ∈ Ω, the
objective function in period t and state ω rewrites as

max
{cω′τ }τ≥t,ω′|πω′0 ,...,πω

′
t−1=πω0 ,...,π

ω
t−1

Uω
t

s.t.
∑

{ω′|πω′0 ,...,πω
′

t−1=πω0 ,...,π
ω
t−1}

T∑
i=t

pω′|πω0 ,...,πωt−1

(
Πi−1
τ=tπ

ω′

τ

)
δi−tcω

′

i ≤ Bω
t

where Bω
t depends on past consumption up to date t− 1. Maximizing Uω

t amounts to
maximizing − 1

k
e−kU

ω
t . The first-order conditions with respect to cωt and cωt+1 write

e−kU
ω
t u′ (cωt ) = λωt , (15)

βe−
k
β
u(cωt )e−kU

ω
t+1u′

(
cωt+1

)
e
k(1−β)
β

Uωt = λωt δ, (16)
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where {λωt } is an adapted process of positive Lagrange multipliers. From (15) and (16)
one derives:

u′ (cωt )

u′
(
cωt+1

) = βδ−1e
k
β

(Uωt −u(cωt ))e−kU
ω
t+1 . (17)

This Euler equation is independent of past consumption.

5.2.2 Implementation

When k 6= 0, the discount factor βδ−1e
k
β

(Uωt −u(cωt ))e−kU
ω
t+1 in the right-hand side of equa-

tion (17) depends on future consumption choices through the utility levels Uω
t and Uω

t+1.
This makes it difficult to find an analytical solution. Yet, it will become apparent later
on, when discussing value of life matters in Section 5.3, that this endogenous discount
factor varies relatively little with consumption levels. This provides an efficient iterative
numerical solution method. The strategy involves selecting a first guess

{
cωt,(0)

}
, from

which we compute the corresponding instantaneous utilities
{
u
(
cωt,(0)

)}
, the lifetime

utilities
{
Uω
t,(0)

}
and the discount factors RDω

t+1,(0) = βδ−1e
k
β (Uωt,(0)

−u(cωt,(0)))e−kU
ω
t+1,(0) .

One can then easily compute an adapted consumption profile
{
cωt,(1)

}
that fulfills both

u′
(
cωt,(1)

)
u′
(
cωt+1,(1)

) = RDω
t+1,(0) (18)

and the budget constraint (13). The profile
{
cωt,(1)

}
does not solve (17) because the dis-

count rate RDω
t+1,(0) computed from

{
cωt,(0)

}
is different from the discount rate RDω

t+1,(1)

implied by
{
cωt,(1)

}
. However, from RDω

t+1,(1) one can derive
{
cωt,(2)

}
that fulfills an

equation similar to (18) and the budget constraint (13), and then iterate the process
to find

{
cωt,(3)

}
, etc. The exact solution to (14) is provided by limn→+∞

{
cωt,(n)

}
since

this limit fulfills both the budget constraint and the first order condition (17). With a
standard computer, convergence occurs in a fraction of a second.6

For the deterministic pension system, we show in Appendix B that the first order
conditions is:

u′ (ct)

u′ (ct+1)
= βδ−1e−

k
β
u(ct)Kt+1

Kt

6Matlab code is available upon request.
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where for all t ∈ T ,

Kt =

∑
ω∈Ω pω

(
Πt−1
τ=0π

ω
τ

)
ek

1−β
β

∑t−1
τ=1 U

ω
τ e−kU

ω
t∑

ω∈Ω pω
(
Πt−1
τ=0π

ω
τ

) .

Here again the discount rate is endogenous and we lack an analytical solution. The
same iterative procedure can be implemented to derive the optimal consumption path.

5.3 Calibration

First, we specify the instantaneous utility function u. We assume the intertemporal
elasticity of substitution to be constant: − u′(c)

cu′′(c)
= σ, or equivalently:

u (c) = 1 + λ
c1− 1

σ − 1

1− 1
σ

where λ is a constant. We normalize u to equal zero in case of death. The difference
in instantaneous utility between being alive but consuming 1 unit of consumption, and
being dead thus equals one. The parameter λ drives the level of the marginal utility
of consumption when alive. The smaller λ, the less variations in consumption affect
instantaneous utility compared to how death affects it. Arthur (1981) suggests that
for individuals living in wealthy societies, mortality differentials have a greater impact
on welfare than variations in consumption. The relatively high empirical estimates for
the value of life confirm that this is indeed the case. Consequently, λ is typically found
to be small, as in our calibration below. This explain why utility levels, and hence the
stochastic discount factor in equation (17), vary little with consumption, making the
method discussed in Section 5.2.2 particularly efficient.

5.3.1 Exogenous calibration

First, we define period 0 as corresponding to age 25. Retirement occurs at age 65 and
the maximal life duration is artificially set at 100 years. Up to age 100, we model
survival rates using the standard method of Lee and Carter (1992). A single index
of the “mortality level”, the state-contingent quantity {κωt }t∈T , drives the dynamics of
survival rates for all ages. It follows a random walk with drift. For any t ∈ T and
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ω ∈ Ω,
κωt = κωt−1 +m+ νωt .

Because mortality rates historically tended to decline, m < 0. In the standard model of
Lee and Carter (1992), the {νωt }t∈T are independent and identically distributed white
noises with volatility ν. The survival rate revealed in the end of period t in state ω for
an individual aged x writes πωt (x) = 1 − eαx+βxκωt , where βx > 0. Due to the random
walk modeling, a favorable evolution of survival probabilities in period t (i.e. a high
κωt ), has a positive impact on all future survival probabilities. An adverse evolution of
survival probabilities has the opposite effect. Survival probabilities are thus positively
correlated with (remaining) life expectancy in case of survival.

We estimate m and ν using historical mortality data for the United States population
from 1945 to 2013 and for ages 25 to 100.7 To better capture the mortality improve-
ments that characterized the second half of the twentieth century, we don’t include
data points prior to 1945.

To reduce the time of our computations, we consider a five-year time step. Hence,
Tret = 9 and T = 16. Moreover, we approximate κ̃ by a simple random walk taking
values {ν,−ν} with probabilities

{
1
2
, 1

2

}
. This generates 215 = 32, 768 different survival

paths.

Figure 2 displays life expectancies and survival rates in the best-case and worst-case sce-
narios. The uncertainty about life expectancy decreases over time, a well-documented
horizon effect.

7This data is available on the Human Mortality Database of the University of California, Berkeley.
We fit the model using the singular value decomposition method to retrieve a least-squares solution
for κ, as described in Lee and Carter (1992). The parameters m and ν are obtained by a least-squares
procedure.
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Figure 2: Life expectancy (left) and survival rates (right) as a function of age.

We assume that income increases over time, with a 50 percent increase between age 25
and age 65. We normalize it so that consumption in the last period of 5 years equals
1 unit. In our simulation, the average retirement income is 1.12 units per period of
5 years. To link it to the real world, one can think of one consumption unit being
equal to 115,000 USD -for a period of five years- so that our average retirement income
would then match the median retirement income measured in the U.S. in 2010 for
individuals older than 65 (Trenkemp 2012 reports a level of about 25,800 USD per
year). The non-discounted expected lifetime income, which equals 13.17 consumption
units in our analysis, would correspond to slightly more than 1.5 million USD. This
value is consistent with the findings of Tamborini et al. (2015). It is close to the
lifetime earnings of a male with some college education.

We compute the 5-year discount factor (1 + r)−5 , assuming a constant yearly interest
rate r = 1%. This matches the historical average of the risk-less short-term interest
rate approximated by the 3-month T-bond, between 2007 and 2017.

We set two preference parameters exogenously. First, we assume that there is no pure
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preference for the present: β = 1. This case corresponds to the multiplicative model
analyzed in depth in Bommier (2013). When β = 1 impatience arises from the com-
bination of risk on the length of life and temporal risk aversion. As emphasized in
Bommier (2013), such a model is actually better able to match empirical consump-
tion profiles than the usual additive model with β < 1. In addition, β = 1 entails
indifference to the timing of resolution of uncertainty. The assumption of preference
for early resolution of uncertainty is standard in applied works using recursive prefer-
ences. Epstein et al. (2014), however, argue that, rather than an indisputable trait of
“rational” preferences, this assumption might be viewed as a technical cost to pay for
disentangling risk and time preferences in an infinite-time setting (where convergence
requires that β < 1).8 Consequently, the assumption of indifference to the timing of
information may seem more desirable than costly. Second, we set σ = 0.5, a value of
the elasticity of intertemporal substitution considered plausible in the literature (see
Trabandt and Uhlig 2011 or Havranek 2015).

5.3.2 Endogenous calibration

We calibrate k and λ so as to replicate two targets. The first target is the value of a
statistical life at age 65, V SL65, defined as the marginal rate of substitution between
statistical survival and consumption. The second target is the rate of time discounting
at age 65, ρ65, defined as the rate of change of marginal utility when controlling for the
variations of consumption. It determines the slope of the consumption path at age 65.

In the present paper, consumption profiles are not deterministic. Therefore, we look
at average values:

ρ65 =
∑
ω∈Ω

pωρ65 (ω) and V SL65 =
∑
ω∈Ω

pωV SL65 (ω)

where, for all ω ∈ Ω,

1 + ρ65 (ω) =

∂Ũω65

∂cω65

∂Ũω65

∂cω70

∣∣∣∣∣
cω65=cω70

and V SL65 (ω) =

∂Ũω65

∂πω65

∂Ũω65

∂cω65

.

8The timing premia implied by recursive utility models in the case of long-run risks may even be
implausibly high (Epstein et al. 2014).
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The
{
Ũω

65

}
are computed assuming that πω′65 = πω65 for all states ω′ such that πω′25, . . . , π

ω′
60 =

πω25, . . . , π
ω
60 (states that are undistinguishable before age 65). That is, Ũω

65 = u (c) −
1
k

log
(
πω65e

−kUω70 + 1− πω65

)
where c = cω65 for the value of a statistical life target and

c = cω70 for the rate of time discounting since we control for variations in consumption
at age 65. In both cases, the value of Uω

70 is computed without any adjustments, as in
equation (12). Then,

1 + ρ65 (ω) =
ekU

ω
70e−k(Ũ

ω
65−u(cω70))

πω65

and V SL65 (ω) =

(
1− e−kUω70

)
ek(Ũ

ω
65−u(cω65))

ku′ (cω65)
.

Our targets correspond to a United-States-based individual aged 65. Then, the corre-
sponding target for the rate of time discounting equals 3.5 percent per year. It implies
that, on average, consumption decreases by 0.2 percent per year at age 65. This is
consistent with the findings of Fernández-Villaverde and Krueger (2007). Viscusi and
Aldy (2007) suggest a target value of a statistical life equal to 500 times the average
consumption between ages 65 and 100.

Table 2 sums up the values of the parameters.

Exogenous parameters

β 1
σ 0.5
r 1.00%
T 100

Calibrated parameters k 0.179
λ 1.03× 10−2

Table 2: Parameter calibration.

Because k quantifies risk aversion “per util”, it should be considered together with the
level of instantaneous utility. Set cm equal to the average consumption level in our
model. Then ku (cm) = 0.177 is the per period coefficient of risk aversion with respect
to the length of life (for a 5-year period) for an individual whose consumption profile
is flat with ct = cm in all periods. This amounts to a coefficient of risk aversion with
respect to the length of life of 3.54× 10−2 per year. To provide an order of magnitude,
an individual aged 65 with a life expectancy of 16.4 years and endowed with such
preferences would undergo a surgical procedure with a five percent chance of death
during surgery only if it provides more than one year and two months of additional
life expectancy (accounting for the risk of dying during surgery). It is difficult to
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obtain precise empirical estimates of individuals’ risk aversion with respect to the
length of life. In the lab, this involves presenting subjects with the unusual exercise of
choosing between hypothetical lotteries on the length of life, controlling for variations
in consumption and pure time preferences. Yet, in one such experiment, Leroux et al.
(2016) provide evidence of deviations from the standard assumption of risk neutrality
with respect to the length of life.

5.4 Results

In this section, we discuss the consumption profiles delivered by the adaptive and
deterministic systems and highlight an interesting consequence of letting contributions
and benefits vary with life expectancy.

5.4.1 Longevity-dependent consumption profile

In Figure 3, we draw the consumption profile in the deterministic system (dotted line)
as well as in the adaptive system for the best and worst survival scenarii (solid and
dashed lines). In the best-case survival scenario, individuals only receive “good” news
about survival over time. In the worst-case, they only receive “bad” news. All other
scenarii comprise a succession of “good” and “bad” news. The optimal consumption
profiles are realistically humped-shaped. The hump occurs between ages 55 and 60.
This is consistent with the empirical findings of Fernández-Villaverde and Krueger
(2007).
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Figure 3: Consumption paths.

The dynamics of mortality rates allow for some learning over time. Lower mortality
rates in a given period increase the chances of survival for all subsequent periods, and
the other way around. Consistently with Proposition 4, the optimal state-dependent
consumption profile is adaptive. Consumption and survival are anti-comonotone. De-
creases in life expectancy entail a decrease in contributions and an increase in benefits.
Increases in life expectancy have the opposite effect. Because we have assumed indif-
ference to the timing of uncertainty resolution, we do not observe the effect discussed
in subsection 4.2. Finally, the impatience effect translates into a steeper decline in
consumption during retirement when life expectancy is lower.

The deterministic consumption profile lies in the interval drawn by the two extreme
scenarios of only “good” or “bad” survival shocks. Consumption in the adaptive system
varies only slightly compared to the deterministic one. Variations range from -1.22 to
+1.25 percent of the deterministic consumption values. Therefore, the living standard
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of surviving individuals is only moderately at risk.

5.4.2 Welfare gains

Lifetime utility is higher in the adaptive system. The welfare gain, however, is almost
negligible. It is comparable to an increase of 0.01% of income. Indeed, our calibra-
tion entails a relatively low degree of temporal risk aversion. Let us emphasize that
one’s own mortality risk (i.e. whether one lives or dies) has much larger consequences
on welfare than the aggregate longevity risk. Combining this very salient individual
mortality risk with a high degree of temporal risk aversion would lead to implausible
consumption profiles. Pension systems that better cope with the aggregate longevity
risk do make individuals better off. Yet, from an individual’s point of view, the risk
reduction is relatively small given that the idiosyncratic component is of much greater
significance. As we will see below, however, the risk reduction is sizable for pensions
providers.

5.4.3 Risk allocation

Pension providers are interested in the distribution of the net costs of a pension system.
In a given state of the world ω, the net lifetime payments write as

T∑
t=0

pωδ
t

(
t−1∏
τ=0

πωτ

)
cωt −

Tret−1∑
t=0

pωδ
t

(
t−1∏
τ=0

πωτ

)
It.

With the Lee and Carter modeling, the variations in aggregate survival rates are small
before retirement. Therefore, the impact of longevity improvements bears mostly on
benefits, which increase with the number of survivors. In both systems, an unexpected
increase in survival translates into net costs for pension providers. In an adaptive
system, however, contributions and survival probabilities are comonotone, while ben-
efits and survival probabilities are anti-comonotone. This shifts part of the financial
cost of longer lives, and part of the financial benefits of shorter ones, to individuals.
In words, compared to the deterministic system, the adaptive pension system offers
a Pareto-improving risk-sharing mechanism for the aggregate longevity risk, in which
individuals bear more longevity risk and pension providers less.
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The distributions of the net lifetime payments in the deterministic pension system
(dotted line) and the adaptive one (solid line) appear in Figure 4 as a percentage of
the expected lifetime income B.

Figure 4: Cumulative density functions of net lifetime payments as a percentage of the
expected lifetime income.

By construction, both systems are actuarially fair. Thus the expected net lifetime
payments are identical and equal to zero. The volatility of the net lifetime payments
is more than twice smaller with the adaptive system than with the deterministic one.
Indeed, under temporal risk aversion, the adaptive system achieves a lower correlation
between length of life and lifetime consumption. Individuals then bear more than half
of the aggregate longevity risk. The first two moments appear in Table 3.
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Deterministic Adaptive
Mean 0 0

Standard deviation 4.12× 10−2 1.99× 10−2

Table 3: Mean and standard deviation of the distribution of net lifetime payments.

5.5 Sensitivity analysis

We now study how sensitive the fraction of the aggregate longevity risk reallocated
to individuals is to our calibration targets. We re-calibrate and re-estimate the model
for a range of target values above and below the benchmarks. For the value of a
statistical life at age 65, we consider calibration targets that range from 400 to 600
times the average consumption. As for the rate of time discounting at age 65, we vary
the calibration target from 3% to 4%. Table 4 summarizes our findings. It provides
the value of the calibrated parameters k and λ as well as the fraction of the aggregate
longevity risk reallocated to individuals.

Sensitivity analysis

V SL = 400cm V SL = 500cm V SL = 600cm

ρ =3% Parameters k = 0.124
λ = 1.20×10−2

k = 0.123
λ = 0.96×10−2

k = 0.123
λ = 0.80×10−2

Risk reduction 44.72% 44.74% 44.77%

ρ =3.5% Parameters k = 0.179
λ = 1.29×10−2

k = 0.179
λ = 1.03×10−2

k = 0.179
λ = 0.87×10−2

Risk reduction 51.76% 51.74% 51.71%

ρ =4% Parameters k = 0.230
λ = 1.37×10−2

k = 0.230
λ = 1.10×10−2

k = 0.230
λ = 0.90×10−2

Risk reduction 36.19% 36.05% 35.76%

Table 4: The risk reduction quantifies the reduction in the standard deviation of net
lifetime payments obtained when switching from a deterministic system to an adaptive
one.

Changes in the value of a statistical life: Fitting different values for the VSL
while holding the rate of time discounting fixed involves changing the parameter λ
while maintaining the other parameters (almost) unchanged. The effect on the optimal
consumption profile, and hence the risk reduction, is negligible. In fact, when mortality
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is exogenous, there exists an asymptotic limit in the case where the VSL goes to infinity
(λ converging to 0 in our specification). Empirical estimates imply large values of the
VSL with predictions close to those obtained in the asymptotic limit.

Changes in the rate of time discounting: Time discounting results from the com-
bination of risk aversion and uncertainty on the length of life. Thus, varying the time
discounting calibration target involves varying the risk aversion parameter k, with
greater discount rates obtained for greater k. Since increasing risk aversion also in-
creases the value of life, keeping the same VSL target for different values of k requires
adjusting the parameter λ (which negatively impacts the VSL) in a comonotonic way.
More risk averse individuals prefer lower correlations between the risks on length of life
and on lifetime consumption. Because survival is exogenous, this lower correlation is
achieved by increasing the amplitude of the consumption fluctuations across states of
the world. This increases the proportion of the aggregate longevity borne by individ-
uals. The relationship between the target value for the rate of time discounting and
the share of aggregate longevity risk, however, is non-monotonic. This is because the
income profile is unchanged in all simulations, while the consumption profile, and thus
the amount of pensions to be paid, varies in shape.

The share of the aggregate longevity risk that individuals retain in an adaptive system
is clearly significant, even when using different calibration targets than ours. The risk
allocation appears to be sensitive to the rate of time discounting, which is a major
determinant of the consumption profile.

6 Conclusion

The literature on the allocation of longevity risk generally takes it for granted that risk-
averse pensioners prefer pensions to be deterministic and, therefore, that the question
of the optimal allocation of the longevity risk would be trivial if this risk could be
insured at no cost. With the current paper, we emphasize that this conclusion is
correct only if pensioners are temporally risk neutral, or if past survival rates convey
no information about future survival rates. Those very restrictive assumptions are at
odds with empirical facts. Experimental studies have found that individuals are not
temporally risk neutral but temporally risk averse (Andersen et al. 2018) and that
mortality rates exhibit a strong serial correlation.
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Accounting for pensioners’ temporal risk aversion and for the serial correlation of sur-
vival rates, we find that pensioners should bear some of the aggregate longevity at the
optimum, even when this risk could be insured at no cost. According to our numerical
simulation, pensioners would be willing to take about 50% of the overall risk (quanti-
fied by the variance of aggregate lifetime net payments) in order to implement a sort
of diversification strategy where bad news in terms of survival are combined with good
news in terms of living standards, and vice versa. Thus, only the remaining 50 % of
the longevity risk would require insurance.

For pension providers, increases in life expectancy may entail enormous financial losses.
We are well aware that insuring the remaining 50 % of the longevity risk at actuarially
fair prices is unrealistic. Our results should thus be eventually combined with those
of previous studies discussing the intergenerational risk-sharing of the longevity risk
or its transfer to financial markets through securitization. The novelty is that the
reference point should not be a deterministic pension system but an adaptive one,
where pensions are periodically adjusted to account for the evolution of life expectancy.
This presupposes that governments would be capable of implementing such adaptive
pension systems.

Interestingly, many countries now link their pension system’s parameters to longevity
improvements. France and Canada increase contribution rates while Sweden or Italy
revalue benefits according to the most recent demographic information. These adjust-
ments, however, only bear either on contributors or on new cohorts of retirees, with no
adjustment taking place during the retirement period. Our contribution suggests that
it would be optimal to include retirees in the scope of longevity-linked adjustments. It
is worth emphasizing that the adjustments are quite limited in their magnitude. We
find that, in the most extreme scenario of sustained longevity improvements, benefits
would decrease by less than 1.25 percent. Such small adjustments would nevertheless
significantly reduce the risk borne by pension providers, without lowering pensioner’s
welfare.
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A First-order conditions in the two-periods model

Since c0 is exogenous, maximization of U0 is equivalent to that of

W0 = −1

k

∑
ω∈Ω

pω
[
πω0 e

−kUω1 + (1− πω0 )
]
.
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For any (ω, ω′) ∈ Ω2 one has

∂Uω′
1

∂cω1
=

u′ (cω1 ) if ω = ω′

0 otherwise.

Thus:
∂W0

∂cω1
= pωπ

ω
0 e
−kUω1 u′ (cω1 ) .

Similarly for any (ω, ω′) ∈ Ω2 one has:

∂Uω′
2

∂cω2
=

u′ (cω2 ) if ω = ω′

0 otherwise.

Moreover

e−kU
ω′
1 = e

−ku
(
cω
′

1

) ∑
{ω|πω0 =πω

′
0 }

pω|πω0
[
πω1 e

−kUω2 + (1− πω1 )
]

β

.

We thus have:

∂e−kU
ω′
1

∂cω2
=

−βπω1 pω|πω0 e
− k
β
u
(
cω
′

1

)
e−kU

ω
2 u′ (cω2 ) ek

1−β
β
Uω
′

1 if πω′0 = πω0

0 otherwise.

Therefore:

∂W0

∂cω2
= βπω0 π

ω
1

∑
{ω′|πω′0 =πω0 }

pω′pω|πω0 e
− k
β
u
(
cω
′

1

)
e−ku(c

ω
2 )u′ (cω2 ) ek

1−β
β
Uω
′

1 .

Now recall that πω0 = πω
′

0 implies that cω1 = cω
′

1 and, from equation (3), we see that
Uω

1 = Uω′
1 . Moreover

∑
{ω′|πω′0 =πω0 } pω′pω|πω0 = pω. Thus:

∂W0

∂cω2
= βπω0 π

ω
1 pωe

− k
β
u(cω1 )e−ku(c

ω
2 )u′ (cω2 ) ek

1−β
β
Uω1 .
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The first-order conditions are therefore:

e−kU
ω
1 u′ (cω1 ) = µ

βe−
k
β
u(cω1 )e−ku(c

ω
2 )u′ (cω2 ) ek

1−β
β
Uω1 = µδ.

B First-order conditions in the deterministic case

Since c0 is exogenous, maximization of U0 is equivalent to that of

W0 (c0, {cω1 } , . . . , {cωT}) = −1

k

∑
ω∈Ω

pω
[
πω0 e

−kUω1 + (1− πω0 )
]
.

In the deterministic case, for any ω ∈ Ω, cωt = ct. One may rewrite the objective
function as follows:

W̃0 (c0, c1, . . . , cT ) = W0 (c0, {cω1 } , . . . , {cωT}) .

Thus,
∂W̃0

∂ct
=
∑
ω∈Ω

∂W0

∂cωt

where
∂W0

∂cωt
= u′ (ct) β

t−1e−
k
β

∑t−1
τ=1 u(cτ )pω

(
Πt−1
τ=0π

ω
τ

)
ek

1−β
β

∑t−1
τ=1 U

ω
τ e−kU

ω
t .

Then,

∂W̃0

∂ct
= u′ (ct) β

t−1e−
k
β

∑t−1
τ=1 u(cτ )

∑
ω∈Ω

pω
(
Πt−1
τ=0π

ω
τ

)
ek

1−β
β

∑t−1
τ=1 U

ω
τ e−kU

ω
t .

Let λ be a positive Lagrange parameter. For any t ∈ T , the first-order condition with
respect to ct writes

u′ (ct) β
t−1e−

k
β

∑t−1
τ=1 u(cτ )

∑
ω∈Ω

pω
(
Πt−1
τ=0π

ω
τ

)
ek

1−β
β

∑t−1
τ=1 U

ω
τ e−kU

ω
t = λδt−1

∑
ω∈Ω

pω
(
Πt−1
τ=0π

ω
τ

)
.

Let

Kt =

∑
ω∈Ω pω

(
Πt−1
τ=0π

ω
τ

)
ek

1−β
β

∑t−1
τ=1 U

ω
τ e−kU

ω
t∑

ω∈Ω pω
(
Πt−1
τ=0π

ω
τ

) .
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The Euler equation follows:

u′ (ct)

u′ (ct+1)
= βδ−1e−

k
β
u(ct)Kt+1

Kt

.
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