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1 Introduction

The twentieth century has seen phenomenal decline in mortality and increase

in productivity level. Figure 1 shows the mortality decline and productivity

increase in the USA from 1900 to 2000.1 As shown in panel (a) of Figure 1,

the (projected) life expectancy at birth for an average person born in 2000

was 80.9 years, 26 years longer than those born a century ago. Likewise, using

real GDP per capita as rough estimates, panel (b) of Figure 1 shows that the

productivity level in the USA has increased almost seven times during the

same period. Similar magnitude of improvement in life expectancy and pro-

ductivity is also observed in other developed economies. These two changes

have led to a much higher level of expected lifetime wealth for younger gen-

erations.

[Insert Figure 1 here.]

Huge demographic and productivity changes, through the effect of ex-

pected lifetime wealth, are likely to influence economic decisions, chief among

which are the retirement and schooling choices. The impact of mortality

decline and/or productivity increase have been widely studied in the liter-

ature. Bloom et al. (2014) consider a life-cycle model with endogenous re-

tirement age, as in Bloom et al. (2007) and Kalemli-Ozcan and Weil (2010).

They find that optimal retirement age is delayed because of mortality decline,

but is reduced by productivity increase. Restuccia and Vandenbroucke (2013)

endogenize schooling duration, as in Heijdra and Romp (2009) and Cervellati

and Sunde (2013). They find that optimal schooling duration rises over time

because of either mortality decline or productivity increase. Boucekkine et al.

(2002), Echevarria and Iza (2006) and Sánchez-Romero et al. (2016) consider

both schooling and retirement choices, but they focus only on the effects of

mortality changes and not those of productivity increase. We observe that

while the core issues studied in the above-mentioned papers are similar, the

results are quite diverse. For example, a mortality decline leads to a rise in

retirement age in Bloom et al. (2014) but may lead to a fall in retirement

age in Kalemli-Ozcan and Weil (2010). Moreover, the assumptions made by

the researchers are sometimes very different, making it hard to compare the

underlying reasons of the different results.

In this paper, we study the effects of mortality decline and productivity

increase on optimal schooling years and retirement age. We conduct both

1Life expectancy data is from the Berkeley Mortality Database

(http://www.demog.berkeley.edu/~bmd/), and GDP per capita data is from the

Maddison-Project (http://www.ggdc.net/maddison/maddison-project/data.htm).
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theoretical and quantitative analysis, but our focus is mainly theoretical. We

obtain new results regarding the interaction of the schooling and retirement

choices, and provide a useful framework to understand the underlying mech-

anism determining the effects of a mortality or productivity shock, which is

helpful to interpret various diverse results in the literature.

Starting with a careful analysis of the effect of mortality decline or pro-

ductivity increase on schooling years or retirement age, we find it useful to

decompose the effect as the sum of the direct effect (due to the exogenous

shock) and the indirect effect (due to feedback from the other endogenous

variable). We find that a common feature determining the impact of either

an exogenous mortality or productivity shock is positive feedback between
optimal schooling years and optimal retirement age,2 and we trace it to the

underlying economic factors captured by the model. Intuitively, the optimal

choice of schooling years depends positively on the duration that the indi-

vidual can reap the return of human capital accumulation. This idea can

be traced back to the influential work of Ben-Porath (1967). Thus, in re-

sponse to an (anticipated) change in the retirement age, the agent changes

the schooling years in the same direction. Similarly, schooling duration and
human capital are important in affecting the marginal benefit in extending

retirement age, through the effect on the individual’s wage profile. As a re-

sult, a change in schooling years would also lead to a subsequent change of

retirement age in the same direction.
While the feature of positive feedback is an important element deter-

mining the sign of the total effect on the schooling years or retirement age,
the other key factor is the sign of the exogenous mortality or productivity

shock. We combine these two sets of factors and provide further analysis.

We find that if the coefficient of intertemporal elasticity of substitution is

smaller than one, then an exogenous increase in productivity will decrease

both retirement age and schooling years. Intuitively, an increase in produc-

tivity has both income and substitution effects on retirement age. When

the intertemporal elasticity of substitution is sufficiently small, the income

effect dominates the substitution effect. Combining the direct effect with the

positive feedback, this leads to a negative total effect on either retirement

age or schooling years. We also obtain analytical results of the effects of

mortality decline. We first show that the direct impact of mortality decline

on optimal schooling years, holding retirement age fixed, is generally posi-

2We emphasize that whether the effects of an exogenous shock on schooling years and

retirement age are positively or negatively correlated, and whether there is positive or

negative feedback between the two endogenous variables, are two different issues. See

Section 3.1 (especially footnote 16) and Section 6 about the distinction between these two

issues.
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tive. We then show that a negative direct effect of a mortality decline on

retirement age is a necessary, but not sufficient, condition for a negative total

effect of a mortality decline on retirement age. This result implies that the

lifetime human wealth channel (d’Albis et al., 2012) is less likely to explain

the decreasing retirement age trend if the schooling duration also responds

to mortality decline.

The existence of positive feedback also has implications on the magnitude
of the total effects on the schooling years and retirement age. In particular,

we show that the direct effect of an exogenous shock on either schooling

years or retirement age is magnified in the presence of the other endogenous

variable, when both direct effects are of the same sign or when exactly one of

the direct effects is zero. Our analysis extends the result of Ben-Porath (1967)

to a setting with endogenous retirement age, and shows that the magnitude

of the effect of a mortality shock on schooling years is magnified under such

an environment.

We obtain the above results in a baseline model focusing purely on the

productivity-enhancing role of schooling (i.e., the Ben-Porath mechanism).

There are two advantages in using this model: (a) the analysis, while rather

tedious, is still manageable; and (b) the intuition of the results is very trans-

parent. However, there is a major disadvantage when we match the predic-

tions of the model with the data. Even if we allow for various combinations

of mortality and productivity shocks, the computational analysis suggests

that the model is not able to account for the negative correlation of school-

ing years and retirement age for the earlier cohorts of the twentieth century.

These results are robust to various specifications and parameters values.

One direction to deal with this issue is to improve along the computa-

tional dimension. It may also be helpful to include the social security system

(as in Gruber andWise, 1999) to explain the negative correlation of schooling

years and retirement age.3 While we believe it is valuable to pursue further

computational analysis, we think that such analysis does not fit well with

the approach of this paper, which is mainly theoretical. Instead, we con-

duct further theoretical analysis by introducing an extra factor: the direct

utility benefit of schooling, as in Bils and Klenow (2000) and Restuccia and

Vandenbroucke (2013). Using the framework of decomposition between the

3Note that we do not analyze social security in this paper. The detailed features of

social security system (in terms of the payroll tax rate, the level and coverage of pension

benefit, eligibility age etc.) differ substantially among countries and for different sub-

periods of the twentieth century. Theoretical results are likely to be less sharp in this

more complicated environment. Since focusing on positive feedback between schooling

and retirement choices and obtaining its implications are the key concerns of this paper,

we decide not to include social security.
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exogenous shocks and the endogenous feedback, we are able to show that the

correlation of schooling years and retirement age may be positive or negative

in the extended model. In particular, we show that the extended model is

able to explain the negative correlation of schooling years and retirement age,

provided that the flow utility of schooling is in some intermediate range.

The paper is organized as follows. In Section 2, we introduce a life-cycle

model in which the sole benefit of schooling is its productivity-enhancing

effect. Various mechanisms have been emphasized in the literature, and

sometimes the underlying reasons in these papers are not very transparent,

especially when several mechanisms are mixed together. After a careful inves-

tigation, we find it easier to first understand the underlying economic reasons

in this simple environment. In Section 3, we provide analytical results re-

garding the impact of mortality and productivity shocks on schooling years

and retirement age. We conduct computational analysis in Section 4. In Sec-

tion 5, we examine issues related to positive feedback and magnification of

the impact of the exogenous shocks, based on theoretical and computational

results in earlier sections. Section 6 extends the model to incorporate the

direct utility benefit of schooling, so as to achieve a better match between

the predictions of the extended model and data. Section 7 concludes.

2 A life-cycle model with schooling and re-
tirement choices

We consider a continuous-time life-cycle model with endogenous schooling

years and retirement age. As in Restuccia and Vandenbroucke (2013) and

Bloom et al. (2014), as well as many papers in the literature, mortality

decline and productivity increase are taken as exogenous and we only inves-

tigate the effects, but not the causes, of these changes. Thus, we abstract

from any health-enhancing expenditure (as in Chakraborty, 2004) or any

feedback of human capital accumulation on economic growth (as in Bils and

Klenow, 2000).

As in many existing papers, we ignore changes in infant and child mor-

tality in our model. Assume that individuals in the model begin to make

economic decisions at age N . Define “adult age” as the age measuring from

age N . Lifetime uncertainty is present in the economic environment that we

study. An individual of cohort b faces an age-specific mortality rate function

μ(x; θb), where x is her (adult) age and θb is an index of mortality level of this

cohort. The function satisfies μ(x; θb) ≥ 0 and limx→T μ(x; θb) = ∞, where
T is the maximum age in the model. Equivalently, lifetime uncertainty can
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be represented by the survival function

l(x; θb) = exp

∙
−
Z x

0

μ(t; θb)dt

¸
, (1)

which is the probability that a cohort-b individual lives for at least x years. In

the analysis performed in subsequent sections, the survival functions l(x; θb)
of different cohorts shift over time to reflect mortality changes.

Individuals in the model make decisions on three dimensions: the con-

sumption path, education, and working versus retirement. To maintain

tractability, we follow many existing papers by assuming individuals stay

in school in early stage of the life cycle, and schooling is a discrete choice

of either full-time study or no study. It is also assumed that individuals do

not return to school after some years of working, and do not take part-time

study simultaneously with a full-time job. For the labor-leisure choice, we

focus on the extensive, rather than intensive, margin. We also do not con-

sider the event of going back to the job market after a period of (temporary)

retirement, consistent with the evidence in Costa (1998, p. 6) that retirement

behavior in most cases is “a complete and permanent withdrawal from paid

labor.” In this environment, an individual spends the first S years of her life

in school, joins labor market immediately after graduation, and retires at age

R.

As mentioned in the Introduction, we first consider a model in which

the sole benefit of schooling is its role to enhance the productivity level of

the individual. In the preference side, a cohort-b individual values consump-

tion and dislikes working. She chooses the consumption path, S and R to

maximize her expected lifetime utility, which is given byZ T

0

exp (−ρx) l (x; θb) c (x)
1− 1

σ − 1
1− 1

σ

dx−
Z R

W

exp (−ρx) l (x; θb) ν (x; θb) dx,
(2)

where ρ is the subjective discount rate, σ is the coefficient of intertemporal

elasticity of substitution, c(x) is the level of consumption at age x, ν (x; θb)
is the disutility of labor of a cohort-b individual at age x, and W is the

minimum age such that disutility of labor is positive.4 It is assumed that

ν (x; θb) is non-decreasing in age, and may shift down over time to reflect

4In the literature, disutility of labor (a non-negative term, which may depend on age

or health status) is assumed to be important after one reaches some ages around 40 to

50. It captures the cost of delaying retirement age. Before that age, this cost is usually

minimal and it is convenient to assume that ν(x; θb) = 0. In the computational analysis,
we take W as 45−N .
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the “compression of morbidity” effect (Fries, 1980; Bloom et al., 2007) of

exogenous health improvement and mortality decline.

The flow budget constraint is as follows:

a0 (x) =
½
[r + μ (x; θb)] a (x) + φbh (S)− c (x)

[r + μ (x; θb)] a (x)− c (x)
if S < x ≤ R

if x ≤ S or x > R , (3)

where r is the real interest rate, a (x) is the level of financial asset at age x,
h (S) is the human capital level of the individual, φb is the index of produc-
tivity level of a cohort-b individual, and the boundary conditions

a(0) = 0, a(T ) ≥ 0. (4)

Under the above specification, the agent has no bequest motive and a

perfect annuity market exists to fully insure against mortality risk, similar

to Yaari (1965). Therefore, at each age x, the agent can lend or borrow

in a perfect financial market with effective (instantaneous) rate of return

r + μ(t; θb).
According to the budget constraint (3), when an individual works (after

studying for S years), her wage rate is given by φbh (S). One may think of
this specification as consisting of three components: depending on (a) the

compensation to raw labor, which is normalized to be 1, (b) one’s level of

human capital h (S), which is a function of schooling duration,5 and (c) an
index φb capturing the changing level of productivity of different cohorts,

with a person from a more recent cohort benefiting from a higher value of

φb. As in Hazan (2009) and Cervellati and Sunde (2013), we assume that the

return to schooling,
h
0
(S)

h(S)
, is positive but non-increasing in S for 0 ≤ S < S.

We also assume that
h
0
(S)

h(S)
is zero for S ≥ S, where S < W .6

We assume there is no social security system in this model, as in Restuc-

cia and Vandenbroucke (2013) and Bloom et al. (2014). Since there is no

social security, the marginal benefit of delaying retirement age is the mar-

ginal utility of the extra labor income generated. On the other hand, the

marginal cost is the disutility of labor.

We consider a model as similar as possible to those in the literature, es-

pecially to Restuccia and Vandenbroucke (2013) and Bloom et al. (2014).7

5In this model, human capital is accumulated only through formal schooling, following

Bils and Klenow (2000) and Hazan (2009). On the other hand, human capital is also

accumulated through on-the-job training in Manuelli et al. (2012).
6This technical assumption ensures that optimal schooling years is less than S (and

thus less than W .) In the computational analysis, we take S = 30.
7The similarities in these two papers are as follows. They both assume perfect capital

market. In their quantitative analyses, they assume a constant growth rate of productivity,

and that interest rate equals to the rate of pure discounting.
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However, when these two models differ, we choose the assumptions with jus-

tification and as standard as possible. We highlight several major features of

our model. In terms of labor-leisure choice, we focus on the extensive margin

and study retirement age, instead of the intensive margin. Thus, we follow

Bloom et al. (2014) in specifying the disutility of labor function based on

discrete choice of labor, instead of a utility function consisting of a continu-

ous choice of leisure at any point in time. For the schooling duration choice,

we follow Restuccia and Vandenbroucke (2013) to assume that the return to

schooling is decreasing in schooling years. However, unlike their paper and

Bils and Klenow (2000), we mainly conduct our analysis (in Sections 2 to 5)

without relying on a term reflecting direct utility benefit of schooling.8 We

believe that the interaction between schooling and retirement choices is most

clearly illustrated in a model based only on productivity-enhancing role of

schooling without direct utility benefit of schooling. In terms of the utility

function of consumption, Restuccia and Vandenbroucke (2013) use a spec-

ification with a log utility function with a subsistence level, but Bloom et

al. (2014) assume constant intertemporal elasticity of substitution (CIES)

form. We choose the more general CIES specification. It turns out that our

results (such as Propositions 2 and 3) depend on the value of the intertem-

poral elasticity of substitution (σ), which determines the relative importance

of the income and substitution effects, but these two effects will cancel out

when σ = 1 (the log case). Besides these three key differences, there is also a
difference in the survival function assumed. We follow Bloom et al. (2014) to

use the more general non-rectangular survival function. This offers the ad-

vantage that the theoretical results hold more generally for different survival

functions, and we can also use a realistic survival function in the quantitative

analysis.

Since our focus is the impact of mortality decline and productivity in-

crease, we only consider two cohort-specific shocks in the model: θb and φb.

Individuals of different cohorts face different productivity levels (indexed by

φb). They also face different survival functions l(x; θb), and different disu-
tility of labor functions ν(x; θb), with both functions indexed by θb. In the

remainder of this section, we obtain various choices of a representative in-

dividual of a particular cohort, with given θb and φb. (See the Appendix in

Section 8 for detailed analysis.) First, conditional on a particular length of

the schooling period and retirement age, we obtain the optimal consumption

path of a cohort-b individual, defined as c (x, S,R; θb,φb). It can be shown

8The absence of such a term in our model corresponds to ζ = 0 in (9) of Bils and
Klenow (2000) and β = 0 in (1) of Restuccia and Vandenbroucke (2013). Note that in
Section 6, we will extend the model to incorporate direct utility benefit of schooling.
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that the (conditional) optimal consumption path is characterized by

c (x, S,R; θb,φb) = exp [σ (r − ρ)x]φbc
n (0, S,R; θb) , (5)

where

cn (0, S,R; θb) =
c (x, S,R; θb,φb)

φb
=

h(S)
R R
S
exp (−rx) l(x; θb)dxR T

0
exp {− [(1− σ) r + σρ]x} l(x; θb)dx

(6)

is the initial consumption level normalized by the productivity level. It is

clear from (6) that this normalized level is independent of φb.

Second, conditional on the optimal consumption path in (5), we obtain

the first-order conditions for the optimal schooling years and retirement age.9

Conditional on a retirement age (R), the optimal schooling years function,eS (R), is defined implicitly according to10
φbh

0
³eS (R)´ ∙Z R

eS(R) exp (−rx) l (x) dx
¸
= φb exp

³
−reS (R)´ l ³eS (R)´h³eS (R)´ .

(7)

The left-hand side of (7) is the marginal benefit of continuing to study, which

is measured by the expected present discounted value of the increases in labor

income throughout the working years from age eS (R) to age R, due to higher
level of human capital. The right-hand side of (7) is the marginal cost (the

expected present discounted value of foregone labor income) of postponing

the entry into the labor market at age eS (R).
Similarly, conditional on the schooling years (S), the optimal retirement

9To avoid unnecessarily lengthy expression, we do not specify the dependence of relevant

functions on θb and φb in (7) to (10), since we focus on optimal choices for a given cohort

in this section. When we consider the comparative static results in later sections (with θb
and/or φb changing), the dependence of relevant functions on θb and φb will be specified

explicitly.
10We could replace R in (7) by Re, where Re is the anticipated retirement age, if we want

to emphasize the role of anticipated retirement age in the optimal schooling years function.

We then need to further impose that the actual and anticipated values of retirement age

are equal (R∗ = Re) at equilibrium. On the other hand, our simplification by using eS (R)
instead of eS (Re) is consistent with the interpretation that the individual makes schooling
and retirement choices simultaneously in this model. Since there is no element of time

inconsistency in our model, both specifications give the same results.
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age function, eR (S), is defined implicitly according to11
(φb)

1− 1
σ exp

³
−r eR (S)´h (S) hcn ³0, S, eR (S)´i− 1

σ
= exp

³
−ρ eR (S)´ ν ³ eR (S)´ .

(8)

The left-hand side of (8) is the marginal benefit of delaying the retirement

age, and the right-hand side is the corresponding marginal cost. Conditional

on a given value of schooling duration, the productivity index φb affects the

marginal benefit through two channels. First, an increase in φb leads to an

upward shift of the consumption path and the resulting decrease in marginal

utility of consumption. Individuals thus demand more leisure, and retire

earlier. Second, a rise in φb causes increases in labor income at all ages. This

rise in the price of leisure causes people to demand less leisure by retiring

later. These two effects correspond to the income and substitution effects of

a change in productivity level on retirement age.12

The optimal choices of schooling years and retirement age, S∗ and R∗,
are the choices of S and R such that S∗ and R∗ satisfy both (7) and (8)
simultaneously.13 That is,

R∗ = eR (S∗) , (9)

and

S∗ = eS (R∗) . (10)

Note that the productivity level φb directly affects condition (8) for the

optimal retirement age, but not condition (7) for optimal schooling years,

after cancellation of the common term. However, as will be seen more clearly

later, it does affect S∗ indirectly through R∗.
11According to (A4) in the Appendix, when retirement age (R) increases, the marginal

cost is given by the expected disutility term l (R) ν (R), which is then discounted back to
age 0 as exp (−ρR) l (R) ν (R). On the other hand, the marginal benefit is given by the
discounted expected increase in labor income, which is exp (−rR) l (R)φbh (S). This is
multiplied by the marginal utility [φbc

n (0, S,R)]−
1
σ to convert it to age-0 utility units.

Eq. (8) is obtained after cancelling the common term l (R).
12Note that the term (φb)

1− 1
σ in (8) comes from these two effects. One component,

φb, comes from the effect of a change in the productivity level on the opportunity cost

of delaying retirement, which is labor income φbh (S), and is associated with the substi-

tution effect. The other component, (φb)
− 1
σ , comes from the marginal utility of initial

consumption level (
h
φbc

n
³
0, S, eR (S)´i− 1

σ

), and is associated with the income effect.
13An alternative way to express the first-order conditions is obtained by substituting

(9) and (10) into (7) and (8). This is what we do when we conduct comparative static

analysis in Section 3. However, we keep the definitions of eS (R) in (7) and eR (S) in (8),
because these two terms are particularly useful in interpreting the results in Section 3.
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3 Impact of a mortality or productivity shock

In this paper, we examine the impact on optimal schooling years and re-

tirement age of two exogenous changes: mortality decline and productivity

increase. Both analytical and computational approaches are useful in a com-

plementary way to understand these behavior. In this section, we derive

comparative static results analytically. We focus on the impact of one exoge-

nous shock at a time, since sharper analytical results are easier to obtain in

the absence of the other shock. In Section 4, we will conduct computational

analysis regarding the impact of both shocks simultaneously. The analytical

results of this section turn out to be not only interesting on its own, but are

also helpful in interpreting the computational results.

In the Appendix, we re-write the first-order conditions (7) and (8), evalu-

ated at the optimal choices of S = S∗ and R = R∗, as (A8) and (A9). Based
on (A10) and (A11), it can be shown that when there is only mortality

decline, its impact on S∗ and R∗ are given by

∂S∗

∂θb
=

∂ eS(R∗; θb)
∂θb

+
∂ eS(R∗; θb)

∂R

∂R∗

∂θb
, (11)

and
∂R∗

∂θb
=

∂ eR(S∗; θb,φb)
∂θb

+
∂ eR(S∗; θb,φb)

∂S

∂S∗

∂θb
, (12)

where

∂ eS(R∗; θb)
∂θb

=

R R∗
S∗ exp(−rx)

∂l(x;θb)

∂θb
dxR R∗

S∗ exp(−rx)l(x;θb)dx
−

∂l(S∗;θb)
∂θb

l(S∗;θb)

2h0(S∗)
h(S∗) − h00(S∗)

h0(S∗) − μ (S∗; θb)− r
, (13)

∂ eS(R∗; θb)
∂R

=

exp(−rR∗)l(R∗;θb)R R∗
S∗ exp(−rx)l(x;θb)dx

2h0(S∗)
h(S∗) − h00(S∗)

h0(S∗) − μ (S∗; θb)− r
, (14)

∂ eR (S∗; θb,φb)
∂θb

=
− 1

σ
1

cn(0,S∗,R∗;θb)
cn(0,S∗,R∗;θb)

∂θb
− 1

ν(R∗;θb)
∂ν(R∗;θb)

∂θb

r − ρ+ 1
σ

exp(−rR∗)l(R∗;θb)R R∗
S∗ exp(−rx)l(x;θb)dx

+ 1
ν(R∗;θb)

∂ν(R∗;θb)
∂x

, (15)

and

∂ eR(S∗;φb, θb)
∂S

=

h0(S)
h(S)

r − ρ+ 1
σ

exp(−rR∗)l(R∗;θb)R R∗
S∗ exp(−rx)l(x;θb)dx

+ 1
ν(R∗;θb)

∂ν(R∗;θb)
∂x

. (16)

Note that
∂ eS(R∗;θb)

∂R
in (14) and

∂ eR(S∗;θb,φb)
∂S

in (16) represent the interaction

between the two endogenous variables.
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According to (11) and (12), a mortality change affects a particular en-

dogenous variable both directly and indirectly. The underlying reasons of

(11) can be traced back to (7) or (A8). Since a mortality change affects the

optimal choice of schooling years (S) through the survival function l (.; θb),

the direct effect is captured by the term ∂ eS(R∗;θb)
∂θb

, evaluated at the original

retirement age. Moreover, retirement age (R) appears in (7), and this term

is affected by a mortality change and may affect schooling years; thus, the

indirect effect is represented by the product of ∂R∗
∂θb

and
∂ eS(R∗;θb)

∂R
. The inter-

pretation of (12) is similar to that in (11), except that the roles of schooling

years and retirement age are interchanged.

Similarly, when there is only productivity increase, its impact on S∗ and
R∗ are given by

∂S∗

∂φb
=

∂ eS(R∗; θb)
∂R

∂R∗

∂φb
, (17)

and
∂R∗

∂φb
=

∂ eR(S∗; θb,φb)
∂φb

+
∂ eR(S∗; θb,φb)

∂S

∂S∗

∂φb
, (18)

where

∂ eR(S∗; θb,φb)
∂φb

=

¡
1− 1

σ

¢
1
φb

r − ρ+ 1
σ

exp(−rR∗)l(R∗;θb)R R∗
S∗ exp(−rx)l(x;θb)dx

+ 1
ν(R∗;θb)

∂ν(R∗;θb)
∂x

. (19)

The interpretation of (17) and (18) is essentially the same as that of (11)

and (12). The only exception is that the productivity level does not affect

the optimal choice of schooling years, since it appears equally on both sides

of (7) and can be cancelled out. As a result, there is only an indirect effect

in (17).

In either the system of (11) and (12) or that of (17) and (18), the total
effect (sum of direct and indirect effects) of an exogenous shock on the two

endogenous variables can be obtained by solving the two relevant equations

simultaneously. Using ψ to represent either θb or φb, we can solve each of the

above two systems as

∂S∗

∂ψ
=M

"
∂ eS (R∗; θb)

∂ψ
+

Ã
∂ eS(R∗; θb)

∂R

!
∂ eR (S∗; θb,φb)

∂ψ

#
, (20)

and

∂R∗

∂ψ
=M

"
∂ eR (S∗; θb,φb)

∂ψ
+

Ã
∂ eR(S∗; θb,φb)

∂S

!
∂ eS (R∗; θb)

∂ψ

#
, (21)
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where

M =

Ã
1

1− ∂ eS(R∗;θb)
∂R

∂ eR(S∗;θb,φb)
∂S

!
> 0, (22)

because of (A7). Note that the solution of (17) and (18) is also given by (20)

and (21) with ψ = φb, once we recognize that
∂ eS(R∗;θb)

∂φb
= 0.

3.1 Positive feedback between the two optimal choices

It is observed from (20) and (21) that there are similarities as well as dif-

ferences for the two systems: ψ = θb or ψ = φb. In Sections 3.2 and 3.3,

we will consider their differences by studying each of them individually.14

Before that, we first focus on the common elements of these two systems of

equations, which are given by the terms
∂ eS(R∗;θb)

∂R
and

∂ eR(S∗;θb,φb)
∂S

appearing

in both systems. These common elements, which are about the interaction

between optimal schooling years and retirement age, exhibit interesting prop-

erties, as given in the following Proposition. In all the propositions in this

paper, it is assumed that the second-order conditions (A5) to (A7) hold for a

meaningful maximization problem. We have checked that they are satisfied

computationally in our analysis in Section 4.

Proposition 1. For the life-cycle model given by (1) to (4),
(a) anticipating that an exogenous shock will shift up (resp. down) the

retirement age function, the agent changes the schooling years in the same
direction; and
(b) a rise (resp. fall) in schooling years leads to a subsequent change of

retirement age in the same direction.
Proof. See the Appendix.
The intuition of Proposition 1 is as follows. We observe from the first-

order condition (7) that retirement age only affects the marginal benefit of

increasing schooling years. When retirement age rises (say, in response to

an exogenous shock), it shifts up the marginal benefit schedule. With an

unchanged marginal cost schedule, the increase in retirement age induces the

optimal schooling years to move in the same direction, as given in Proposition

1(a).

14We decide to consider these two systems separately because of two reasons. First,

the underlying economic reasons are different for the two cases. Second, whether there is

magnification of the shock or not, and the channels of magnification if they occur, differ

slightly for the two shocks, because both direct effects are present for mortality decline

but one direct effect is absent for productivity increase. We will elaborate on this point

in Section 5.
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According to the first-order condition (8), a change in schooling years has

two effects on the marginal benefit of continuing working: a term related to

human capital function and one related to the normalized consumption level.

It can be shown from (6) and (7) that at the optimal schooling years, the

effect on normalized consumption level becomes zero.15 As a result, there is

only one effect related to the rate of return of accumulating human capital,

as given in (16). Since the rate of return is positive in the relevant region,

agents with more schooling will retire later, as given in Proposition 1(b).

According to Proposition 1,
∂ eS(R∗;θb)

∂R
> 0 and ∂ eR(S∗;θb,φb)

∂S
> 0. The changes

in the two endogenous variables S∗ and R∗ (due to a particular exogenous
shock, for example) reinforce each other.16 Positive feedback exists, and this

contrasts with the other possibility of negative feedback in which
∂ eS(R∗;θb)

∂R

and
∂ eR(S∗;θb,φb)

∂S
are of opposite signs.17

3.2 Effects of productivity increase

We first examine how an increase in the productivity parameter (φb), other

things being equal, changes optimal schooling years and retirement age. The

analysis is simpler in this case, because productivity increase has no direct

effect on schooling years (
∂ eS(R∗;θb)

∂φb
= 0). The results are summarized in the

following Proposition.

Proposition 2. For the life-cycle model given by (1) to (4). If

0 < σ < 1, (23)

then ∂S∗
∂φb

< 0 and ∂R∗
∂φb

< 0.
Proof. See the Appendix.
15In Section 6, we will further comment on this point for the extended model.

16As will be seen in Proposition 6, positive values of
∂ eS(R∗;θb)

∂R and
∂ eR(S∗;θb,φb)

∂S do not

necessarily lead to positive correlation of the two endogenous variables. We need to con-

sider this endogenous interaction component together with another component: the signs

of the direct effects of the exogenous shocks.
17Positive feedback is perhaps easiest to understand in a dynamic setting in which the

responses occur sequentially. For example, according to Vietorisz and Harrison (1973, p.

369), “positive feedback arises when the induced effect–after completion of the cycle–has

the same sign as the original effect and thus reinforces it.” While we do not emphasize the

dynamic process of the interaction of the two endogenous variables in our model, we think

the characterization of positive feedback is appropriate because Proposition 1 suggests

that the positive response of one endogenous variable to the movement of the other, and

vice versa, reinforce each other. The emphasis of “mutually reinforcing elements” is also

found in the study of positive feedback by Arthur (1990, p. 99).
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The intuition of Proposition 2 is as follows. As observed in (11), (12),

(17) or (18), the impact of an exogenous shock (θb or φb) on S
∗ and R∗ can

be expressed as the sum of the direct effect (due to the exogenous shock) and

the indirect effect (due to the feedback from the other endogenous variable).

Moreover, we can solve the system of (11) and (12), or that of (17) and (18),

to obtain (20) and (21). According to these two equations, the impact of an

exogenous shock on S∗ and R∗ can be decomposed into two components: the
exogenous shock component and endogenous feedback component. Proposi-

tion 1, which concerns the feedback (or interaction) term, shows that both
∂ eS(R∗;θb)

∂R
and

∂ eR(S∗;φb,θb)
∂S

are positive.18 We call this feature positive endoge-
nous effect. Together with second-order condition (A7), we see from (20)

and (21), with ψ = φb, that when
∂ eR(S∗;θb,φb)

∂φb
= 0 (direct effect of the pro-

ductivity shock on schooling years is zero), both total effects (∂S
∗

∂φb
and ∂R∗

∂φb
)

are positively related to
∂ eR(S∗;θb,φb)

∂φb
(direct effect of the productivity shock on

retirement age). When (23) holds, the income effect dominates the substitu-

tion effect, leading to negative exogenous effect : ∂ eR(S∗;θb,φb)
∂φb

< 0. Combining
the negative exogenous effect and positive endogenous effect leads to the

negative total effect for the productivity shock in Proposition 2.

For the sake of completeness, we summarize in the following Proposition

the remaining two cases about the value of σ. The proof, which is only

slightly different from that of Proposition 2, is omitted.19

Proposition 3. (a) When σ = 1, an increase in productivity level has no
effect on both S∗ and R∗.
(b) When σ > 1, an increase in productivity level leads to increases in

both S∗ and R∗.

3.3 Effects of mortality decline

We now study how a change in the mortality parameter (θb), other things

being equal, affects optimal schooling years and retirement age.

Solving (11) and (12) simultaneously gives (20) and (21), with ψ = θb.

As in Section 3.2, it is helpful to decompose the total effect of a mortality

decline on schooling years or retirement age into the exogenous (shock) and

endogenous (feedback) components. As seen from (20) and (21), the effects

18The term
∂ eR(S∗;φb,θb)

∂S is unimportant for the proof of Proposition 2 because
∂ eS(R∗;θb)

∂φb
=

0, but is important generally; see, for example, the analysis of the effect of mortality decline
in Section 3.3.
19The ingredients of the proof of Proposition 3 are very similar to those for Proposition

2. The only difference is that
∂ eR(S∗;θb,φb)

∂φb
= 0 (resp. > 0) when σ = 1 (resp. > 1).
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due to the feedback term are the same as those given in Proposition 1: both
∂ eS(R∗;θb)

∂R
and

∂ eR(S∗;θb,φb)
∂S

are positive. Moreover, 1 − ∂ eS(R∗;θb)
∂R

∂ eR(S∗;θb,φb)
∂S

> 0
because of (A7). On the other hand, the exogenous components correspond

to the two direct effects due to mortality decline:
∂ eS(R∗;θb)

∂θb
and

∂ eR(S∗;θb,φb)
∂θb

.

It is easy to see from (20) and (21) that the total effect on either schooling

years or retirement age (∂S
∗

∂θb
or ∂R∗

∂θb
) is a linear combination of these two

direct effects.

We first examine the direct effect of a mortality change on schooling

years (
∂ eS(R∗;θb)

∂θb
). Based on (13), as well as (A5) and (A13) in the Appendix,

a positive value of
∂ eS(R∗;θb)

∂θb
is equivalent toR R∗

S∗ exp (−rx) l(x; θb)
hR x
S∗

³
−∂μ(t;θb)

∂θb

´
dt
i
dxR R∗

S∗ exp (−rx) l (x; θb) dx
> 0. (24)

According to (7), a mortality decline affects optimal schooling years (S∗) di-
rectly through higher future income stream (by increasing the survival proba-

bilities from S∗ to R∗) in the marginal benefit schedule and foregone current
income (by increasing the survival probability at age S∗) in the marginal
cost schedule. It is well known that mortality rate at the current age only

affects future survival probabilities but not past survival probabilities; see

(1) and (A12) also. Since the survival probabilities of age R∗ and above do
not appear in (7), the effect of a change in θb on μ(.; θb) for ages after R

∗ is
irrelevant. Moreover, the analysis in (A13) shows that the effects of a change

in θb on μ(t; θb) for t ≤ S∗ on the marginal benefit and marginal cost sched-
ules exactly cancel out. Thus, the direct effect of a change in θb on optimal

schooling years depends only on its impact on μ(t; θb) for t ∈ [S∗, R∗].20 Eq.
(24) has a nice interpretation that the linear combination of the effects of a

change in θb on the survival probabilities from age S
∗ to age R∗, which only

appear in the marginal benefit schedule, is positive.

A more intuitive interpretation can further be obtained in the special case

that the mortality decline process causes decreases in mortality rates of the

working years from S∗ to R∗. In this case,

−∂μ(t; θb)
∂θb

> 0,∀t ∈ [S∗, R∗] . (25)

Since (25) is a sufficient condition for (24), it is easy to see that (24) is

satisfied when a change in θb decreases mortality rates during the working

20Cai and Lau (2017, Section 3) provide a proof of this result in a model with endogenous

schooling years and exogenous retirement age.
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years. Observed mortality decline in the twentieth century usually reduces

mortality rates for most, but not necessarily all, ages. Thus, −∂μ(t;θb)
∂θb

may be

negative for some t, and (25) may not hold. However, the above arguments

suggest that, based on the linear-combination interpretation described in the

previous paragraph, it is very likely that (24) holds for a lot of empirically

relevant mortality decline processes.21

We next examine the direct effect of a mortality change on retirement

age (
∂ eR(S∗;θb,φb)

∂θb
). It is observed from (8) that a mortality decline affects

the normalized consumption level on the marginal benefit schedule, and the

disutility of labor term on the marginal cost schedule. According to (A14) in

the Appendix, the effect of a mortality decline on the consumption level can

be decomposed into two effects, which are called the lifetime human wealth

effect and years-to-consume effect, following (23) of d’Albis et al. (2012).22

Combining (15) and (A14), it can be shown that the sign of
∂ eR(S∗;θb,φb)

∂θb
is the

same as the sign of23

1

σ

R T
0
exp {− [(1− σ) r + σρ]x} l (x; θb)

hR x
0

³
−∂μ(t;θb)

∂θb

´
dt
i
dxR T

0
exp {− [(1− σ) r + σρ]x} l (x; θb) dx

+

³
−∂ν(R∗;θb)

∂θb

´
ν (R∗; θb)

−1
σ

R R∗
S∗ exp (−rx) l (x; θb)

hR x
0

³
−∂μ(t;θb)

∂θb

´
dt
i
dxR R∗

S∗ exp (−rx) l (x; θb) dx
. (26)

Summing up the above analysis, there are three components in the direct

effect of a mortality decline on retirement age: the lifetime human wealth

effect (by shifting down the marginal benefit schedule), the years-to-consume

effect (by shifting up the marginal benefit schedule) and the compression of

morbidity effect (by shifting down the marginal cost schedule). If the sum

of the years-to-consume effect and compression of morbidity effect is at least

as large as the lifetime human wealth effect, then (26) is non-negative and
∂ eR(S∗;θb,φb)

∂θb
≥ 0. In the main model considered by d’Albis et al. (2012) in

21As will be discussed in Section 5, (24) holds computationally for the USA from 1900

to 2000.
22Note that d’Albis et al. (2012) focus on mortality decline at an arbitrary age to

show that mortality reductions at different ages have systematically different effects on

retirement age. On the other hand, our specification allows mortality changes occurring at
all ages, and use a change in θb to capture this more general mortality change. However,

both (23) of d’Albis et al. (2012) and (A14) have similar economic interpretations.
23Similar integral terms appear in (24) and the right-hand side of (26), except that the

limits of integration are S∗ and x in (24), and 0 and x in (26). In the former case, the
lower limit of integration is S∗ instead of 0, because the effects of θb on μ (.; θb) from 0 to
S∗ on marginal benefit and marginal cost have been cancelled out, as seen from (A13).
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which only the lifetime human wealth and years-to-consume effects exist,24

they argue that when a mortality decline concentrates on old ages, the life-

time human wealth effect is absent and the years-to-consume effect is present,

resulting in a delay in retirement. On the other hand, if a mortality decline

concentrates on younger ages, then the lifetime human wealth effect may

dominate, leading to earlier retirement. Thus, a mortality decline which

affects simultaneously mortality rates at different ages will generally have

ambiguous effect on retirement age. In the life-cycle model with schooling

years being endogenously determined and with an additional compression of

morbidity effect, the various effects examined in d’Albis et al. (2012) are also

relevant, leading to the same conclusion that the direct effect of a general

mortality decline process on retirement age is usually ambiguous.

Combining these two direct effects, we obtain useful results regarding the

sign of the total effect of a mortality decline on retirement age, ∂R∗
∂θb
. This is

given in the following Proposition.

Proposition 4. Consider the life-cycle model given by (1) to (4). Assume
that the direct effect of a mortality decline on schooling years is positive.
(a) If a mortality decline has a non-negative direct effect on retirement

age, then ∂R∗
∂θb

> 0.
(b) A necessary, but not sufficient, condition for ∂R∗

∂θb
< 0 is a negative

direct effect of a mortality decline on retirement age.
The intuition of Proposition 4 is as follows. In a life-cycle model incorpo-

rating both schooling and retirement choices, the effect of a mortality decline

on retirement age is given by (21), with ψ = θb. It is observed that both

direct effects (
∂ eS(R∗;θb)

∂θb
and

∂ eR(S∗;θb,φb)
∂θb

) can be important in determining the

sign of the total effect ∂R∗
∂θb
. Since a mortality decline has a positive direct

effect on schooling years (
∂ eS(R∗;θb)

∂θb
> 0) when (24) holds, and longer schooling

duration induces higher retirement age (
∂ eR(S∗;θb,φb)

∂S
> 0) according to Propo-

sition 1(b), the indirect effect (due to the endogenous change in schooling

years) of mortality decline is positive in this case. As a result, the total

effect of a mortality decline on retirement age is positive if the direct effect
∂ eR(S∗;θb,φb)

∂θb
is non-negative, as stated in Proposition 4(a). On the other hand,

Proposition 4(b) states that
∂ eR(S∗;θb,φb)

∂θb
has to be strongly negative in order

to have an overall negative effect.

The above results are related to the debate in the economic demography

literature. According to conventional wisdom in this literature, when people

24d’Albis et al. (2012, Section 4) also consider the compression of morbidity effect and

imperfect annuity market, but their argument can be explained most intuitively in their

main model.
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are expected to live longer, they tend to delay their retirement so as to earn

more resources for the post-retirement days. Empirically, however, the aver-

age retirement age trend over time is more complicated than the monotonic

increasing relationship predicted by conventional theory. As documented in,

for example, Costa (1998, Figure 2.1), labor force participation rates of US

men aged 65 and over declined from over 60% in 1900 to around 20% at the

1990s. Interestingly, the downward trend of labor force participation rates

of men aged 65 and above seems to reverse around the 1990s (Maestas and

Zissimopoulos, 2010, Figure 4).25

Different reasons to explain the decreasing trend of retirement age for

the cohorts born in the late nineteenth century and early twentieth century

in developed countries have been offered in the literature. Kalemli-Ozcan

and Weil (2010) focus on a decrease in the uncertainty about the age at

death, and show that mortality decline may lead to early retirement if this

uncertainty effect is very strong. On the other hand, d’Albis et al. (2012)

find that a mortality decline may lead to early retirement age if the lifetime

human wealth effect dominates the years-to-consume effect, and they clarify

that this condition is more likely to hold if the mortality decline concentrates

on younger ages. Besides these demographic factors, Gruber and Wise (1998,

1999) examine the role of generous benefits provided by the social security

system. Costa (1998) emphasizes the wealth effect associated with sustained

economic growth. Bloom et al. (2014) follow up on this idea, and combine

mortality decline and increasing wealth to explain declining retirement age

in the twentieth century.

Our analysis has a direct contribution to the above debate. The analysis

of d’Albis et al. (2012) implies that a necessary and sufficient condition for a
mortality decline leading to an early retirement age in a life-cycle model with

exogenous schooling years and the compression of morbidity effect is that the
lifetime human wealth effect dominates the sum of the years-to-consume and

compression of morbidity effects. In terms of the notations of this paper, the

condition is equivalent to a negative value of (26).26 According to Proposition

4(b), a negative value of (26), which implies that
∂ eR(S∗;θb,φb)

∂θb
< 0, becomes

only a necessary condition for a mortality decline leading to earlier retirement
when schooling duration is endogenous and (24) holds. This result implies
that the lifetime human wealth channel emphasized in d’Albis et al. (2012)

25Note that people who retire in the 1990s correspond roughly to various cohorts born

on the 1920s and 1930s.
26The point can be seen from (21) with ψ = θb. In a model with exogenous schooling

years,
∂ eR(S∗;θb,φb)

∂S = 0. Thus, a necessary and sufficient condition for ∂R∗
∂θb

< 0 is a negative

value of the direct effect
∂ eR(S∗;θb,φb)

∂θb
.
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is less likely to explain the declining trend of retirement age in an economic

environment in which schooling years also respond to mortality decline. As

argued earlier, it is very likely that the direct effect of a mortality decline

on schooling years is positive (i.e., (24) holds). In this case, even if the

necessary condition of a negative value of the direct effect of a mortality

decline on retirement age (i.e., (26) is negative) holds, a mortality decline

may not be sufficient to generate a negative total effect on retirement age.

4 Quantitative analysis

In this section, we conduct quantitative analysis to examine the impact of

mortality decline and productivity increase on schooling years and retirement

age. We will first conduct analysis based on the baseline model, and then

perform sensitivity analysis.

4.1 Specifications of the baseline model

As far as possible, the specifications in our baseline model are those com-

monly used in the literature. We use the Gompertz-Makeham specification

for the survival function, as in Heijdra and Romp (2009) and Bloom et al.

(2014). The Gompertz-Makeham survival function, which involves three pa-

rameters, is given by

l (x; θb) = l
GM(x; θb) = exp

½
−μb,0x−

μb,1

μb,2

£
exp

¡
μb,2x

¢− 1¤¾ , (27)

where μb,i (i = 0, 1, 2) is related to the mortality parameter θb defined before,
as follows:

μb,i = μi(θb). (28)

The corresponding age-specific mortality rate function is given by μGM(x; θb) =

− 1
lGM (x;θb)

∂lGM (x;θb)
∂x

= μb,0 + μb,1 exp
¡
μb,2x

¢
.27 Note that the coefficients are

cohort-specific.

27Note that μGM (x; θb) does not tend to infinity for finite x, and thus is different from the
convenient assumption of a finite maximum age (T ) in the theoretical model. However, this

discrepancy does not pose any practical problem in our computational analysis, because

we assume T = 110 − N or T = 115 − N, and the estimated values of lGM (x+N ;θb)
lGM (N;θb)

are

effectively zero for x+N > 110. (See Figure 2.)
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Following Bloom et al. (2014), the disutility of labor function of cohort-b

individuals is assumed to be proportional to that cohort’s age-specific mor-

tality rate function:

ν (x; θb) = δμGM(x; θb) = δ
£
μb,0 + μb,1 exp

¡
μb,2x

¢¤
, (29)

where δ > 0.
For the human capital function, we assume

h (S) = exp(γSλ), (30)

where γ > 0 and 0 < λ ≤ 1. This functional form is consistent with those in
the literature, such as Cervellati and Sunde (2013) and Cai and Lau (2017).

According to this specification, the rate of return to schooling is

h0 (S)
h (S)

= γλSλ−1, (31)

which is a decreasing function in S when λ is strictly less than 1.

Finally, we assume a constant growth rate in productivity, as in Restuc-

cia and Vandenbroucke (2013) and Bloom et al. (2014). Normalizing the

productivity index for the 1900 cohort as 1, this index for cohort-b is given

by

φb = exp [g(b− 1900)] , (32)

where g (g > 0) is the growth rate of the productivity level.

4.2 Calibration

The values of the parameters in the baseline model are chosen to match those

in the literature as far as possible. (We will also use other parameter values

in the sensitivity analysis.) In particular, we choose ρ = 0.03, r = 0.03 and
g = 0.0127, following Bloom et al. (2014). We set σ, the intertemporal

elasticity of substitution, to be 0.6. Following Boucekkine et al. (2003), we

assume that N = 10.28 Finally, we assume that T = 100, which corresponds
to a maximum biological age (T +N) of 110.
To estimate the parameters of the survival functions, we minimize the sum

of squared residuals between the survival probability based on the Gompertz-

Makeham specification (27) and the data of US men from the Berkeley Mor-

tality Database. For each cohort, we first transform the data to obtain the

28Note than Bloom et al. (2014) assume N = 20, because they focus only on retirement.
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survival probabilities conditional on reaching age N , and then choose the

three survival parameters (μb,0, μb,1 and μb,2) to minimize

SSRl
¡
μb,0,μb,1,μb,2

¢
=

TX
x=1

∙
exp

½
−μb,0x−

μb,1

μb,2

£
exp

¡
μb,2x

¢− 1¤¾− ldataN+x

ldataN

¸2
,

(33)

where ldatax is the survival probability data up to age x. Figure 2 shows

the comparison of the survival probability data and that of the estimated

Gompertz-Makeham model, for the beginning and ending years (1900 and

2000), as well as the mid point (1950) of the USA data in the Berkeley

Mortality Database. It is observed that the fit is very good in every case.

The fits in other years, which are not shown, are also good.

[Insert Figure 2 here.]

For the estimation of parameters γ and λ in the human capital function

h (S), we also use the non-linear least squares method. Specifically, we choose
γ and λ to minimize

SSRS (γ,λ) =
15X
x=0

©
S∗1900+5x (γ,λ)−

£
Sdata1900+5x − (N − 6)

¤ª2
, (34)

where S∗b (γ,λ) denotes the optimal schooling years of cohort-b individuals
calculated from the model, and Sdatab is from the schooling years data set (for

US men) used in Goldin and Katz (2008), which starts from 1876 and ends at

1975.29 There are only 16 observations, for the data in 5-year interval, cov-

ered in both the Berkeley Mortality Database and Goldin and Katz (2008).

According to the estimation result, bγ = 0.0482, bλ = 0.948, and the root mean
squared error (RMSE) is 0.302, which is reasonably small. The estimated
schooling data fits the actual data reasonably well, as seen in Figure 3.

[Insert Figure 3 here.]

Finally, we calibrate parameter δ of the disutility function such that the

optimal retirement age for the 1900 cohort is 65.30 The parameter values of

the baseline case are summarized in Table 1.

29We are grateful to Diego Restuccia for sending the data set. We use the data in 5-year

interval to minimize computational time. Our results are essentially the same when we

use the annual data.
30Bloom et al. (2014) also calibrate the disutility parameter of their model such that

optimal retirement age for the 1900 cohort is 65. Note that we present the numerical

values of various variables in actual age for easier comparison. For example, we add N to

the calculated values of R∗ (expressed in model age). We also add N − 6 to the calculated
values of S∗, corresponding to the assumption that children go to school from age 6.
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[Insert Table 1 here.]

4.3 Effects of mortality decline and productivity in-
crease

In the quantitative analysis, we focus on 21 cohorts of US men: starting from

year 1900, and increasing every 5 years up to year 2000. For each cohort,

we use the specifications and parameters discussed above, together with the

survival probability data of the corresponding cohort. The results of the

baseline case are shown in Figure 4, with the optimal retirement ages given

in the upper panel and the optimal schooling years given in the lower panel.

[Insert Figure 4 here.]

Optimal retirement age rises in early cohorts (from an imposed value of

65 in 1900) until reaching the peak of 69.0 for the 1950 cohort and falls

gradually afterwards, to 67.9 in 2000. It is observed from Figure 4 that the

rate of increase in retirement age from 1900 to 1950 is larger in magnitude

than the rate of decrease from 1950 to 2000. The path of optimal schooling

years, on the other hand, shows a rather different profile as the retirement

age. The optimal schooling years series starts from 8.22 years for the 1900

cohort, increases all the way up to 13.71 years for the 1990 cohort, and then

decreases slightly to 13.67 years for the 2000 cohort. It is also observed from

Figure 4 that the rate of increase in schooling years was quite high in the

earlier decades, but the increase slowed down in the middle of the century.

To understand the trend of the optimal retirement age and schooling

years paths, we perform decomposition exercises by isolating the effect of

two factors individually. Specifically, when analyzing the effect of mortality

decline only, we shut down the productivity increase channel by using g = 0
in (32). On the other hand, when analyzing the effect of productivity increase

only, we use μb,j = μ1900,j (j = 0, 1, 2) in (27) and (29). That is, we switch
off the mortality decline channel by assuming the survival functions in later

decades are the same as the 1900 version. Note that we keep other parameters

as those in Table 1 in these decomposition exercises.

We first look at the effect on optimal retirement age in the upper panel

of Figure 4. When the productivity level is held constant, retirement age

increases monotonically from 65 to 78.1 in response to reductions in mortality

rates. It is also observed that the retirement age increases at a decreasing

rate, implying that the mortality effect have become weaker over time. This

reflects the well-known fact that the rate of mortality decline in developed

countries is slowing down in the second half of the twentieth century. As
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observed in Figure 2, the shifting out of the survival functions from 1950 to

2000 is smaller than that from 1900 to 1950. On the other hand, the optimal

retirement age decreases from 65 to 53.0 if there is only productivity increase

(and thus, increased lifetime wealth). Note that the change in retirement

rate in response to productivity increase is almost linear, unlike the effect of

mortality decline.

We observe similar effects on optimal schooling years. When there is only

mortality decline, optimal schooling years increase monotonically from 8.22

to 18.45. On the other hand, when there is only productivity increase, the

corresponding figure decreases from 8.22 years to 5.29. Again, we observe

that the schooling years path is concave when there is only mortality decline,

and is rather linear when there is only productivity increase.

The two results on retirement age (positive effect of mortality decline and

negative effect of productivity increase) are consistent with those in Bloom et

al. (2014). In this sense, their qualitative results, which are developed for a

model with exogenous retirement age, are also relevant when retirement age

is endogenously determined. On the other hand, we find that introducing

endogenous schooling years choice brings new qualitative and quantitative

results when we consider the effects of simultaneous changes in mortality and

productivity. Bloom et al. (2014) show that the magnitude of the decrease

in optimal retirement age in response to productivity increase is about twice

that of the increase in retirement age in response to mortality decline. As

a result, the optimal retirement age decreases from 1901 to 1951 and also

from 1951 to 1996 (Bloom et al., 2014, Table 3). Our analysis, however,

shows that optimal retirement age increases in the first half of the century

and then decreases in the second half. The intuition of this difference can be

traced to the concave shape of the path of schooling years, which is caused

by the substantial decline of mortality in the first half of the century and the

decreasing rate of return of human capital formation. Bloom et al. (2014) do

not consider schooling choice and thus, any indirect effect through schooling

years on retirement age is not captured.31

31At first glance, it appears that including schooling choice in the life-cycle model rep-

resents a worse move, if our main objective is to explain the decrease in retirement age

for the cohorts born in the first half of the twentieth century. However, we think that

schooling years, together with retirement age, should be modeled as choice variables in

studying the impact of mortality decline and productivity increase. This paper adopts this

approach, and has contributions in explaining the decreasing trend of retirement age, even

though it mainly examines other issues. As will be shown in Section 6, introducing utility

benefit of schooling in addition to its productivity-enhancing role is helpful to explain the

decrease in retirement age in a model with both schooling and retirement choices.
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Regarding the impact on schooling years, the positive effect of mortal-

ity decline is consistent with Restuccia and Vandenbroucke (2013). On the

other hand, the negative effect of productivity increase on schooling years

is different from the positive effect in Restuccia and Vandenbroucke (2013).

We will re-examine this issue in Section 6.

4.4 Sensitivity analysis

We report the results of the sensitivity analysis regarding the parameters

listed in Table 1.

First, we are interested to know how sensitive our quantitative results are

with respect to the values of interest rate and subjective discount rate. In the

baseline case, we have followed Bloom et al. (2014) to assume r = ρ = 3%.
The first sensitivity analysis we perform is to assume that r = ρ = 4%
(Case 1a), as in Restuccia and Vandenbroucke (2013).32 When the values of

these two parameters are the same, (5) implies that the consumption path is

constant. It is also interesting to consider other parameter values such that

consumption is changing over time. We consider the case that r = 5% and

ρ = 2% (Case 1b), as in Barro et al. (1995). The results for these two cases,
together with the baseline case, are presented in panel (a) of Figure 5. It can

be observed that there are only minor differences in retirement age and years

of schooling. Graphically, the profiles remain mostly unaltered, with a mildly

inverted U-shaped graph for the retirement age and a concavely increasing

one for schooling years. These analyses show that the baseline results are not

sensitive to the choice of r and ρ, at least when they vary within a reasonable

range.

[Insert Figure 5 here.]

Second, we vary the value of the growth rate of productivity. In the

baseline case, we assume that the growth rate of productivity is 1.27%.33

We would like to know how sensitive our main results are with respect to

this parameter. We consider g = 1% (Case 2a), lower than the baseline

value, and g = 2% (Case 2b), higher than the baseline value. The results are
given in panel (b) of Figure 5. When productivity is growing at a slower rate

(g = 1%), the retirement age path is above that of the baseline case, with the

32Note that in each of the following cases, we re-calibrate the three parameters (γ, λ

and δ) according to the procedures described in Section 4.2.
33Note that this is the value assumed in Bloom et al. (2014, p. 852), corresponding

to the long-run growth rate of real wage in the USA. On the other hand, Restuccia and

Vandenbroucke (2013) assume g = 2%.
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retirement age for the 2000 cohort at 69.8, which is almost 2 years higher than

67.9 of the baseline case. Intuitively, when the growth rate of productivity

is lower, the effect of productivity increase (and thus, wealth) is weaker.

Thus, the effect of mortality decline on retirement age becomes relatively

more important, resulting in a higher retirement age path. Interestingly,

the schooling years profile is not too much different from the baseline case.

When productivity is growing faster (g = 2%), the stronger productivity
effect drags down the retirement age path substantially, to an extent that

the level of retirement age for the 2000 cohort is even lower than the level for

the 1900 cohort. The schooling years profile now has an inverted U-shape.

For Case 2b, the decrease in retirement age is substantial (4.6 years) from

1945 to 2000, and similarly, the corresponding decrease in schooling years

is quite large (1.71 years), offering support regarding the interaction of the

effects on these two variables.

We next perform analysis with different values of the intertemporal elas-

ticity of substitution (σ). In the baseline case, we focus on the region σ < 1
(with the income effect dominating the substitution effect), and assume

σ = 0.6. We consider two cases in this region: σ = 0.5 (Case 3a), which
is assumed in Bloom et al. (2014), and σ = 0.7 (Case 3b). We also consider
two other cases that the income effect does not dominate the substitution

effect. In Case 3c, we consider σ = 1 such that the two effects cancel out.
Finally, we consider σ = 1.5 (Case 3d), in which the substitution effect
dominates. The results vary significantly when σ changes. This pattern is

particularly clear when we switch off the mortality effect and focus only on

the effect of productivity increase. The variation of the relative magnitude

of the income and substitution effects with respect to σ is confirmed: re-

tirement age and schooling years decrease over time (with increasing wealth)

when σ < 1, but increase when σ > 1. (See Table 2.) Quantitatively, the
magnitude of the changes in retirement age and schooling years with respect

to σ is large. In panel (c) of Figure 5, we focus on the comparison of the base-

line case with Cases 3a and 3b, regarding the combined effect of changes in

mortality decline and productivity increase. When σ decreases slightly from

the baseline value to 0.5, the productivity effect becomes stronger, leading

to decreases in the retirement age and schooling years in the second half

of the twentieth century. The effect is substantial, and the retirement age

for the 2000 cohort is even lower than that for the 1900 cohort. Similarly,

the productivity effect becomes weaker when σ increases to 0.7, leading to

increases in both retirement age and schooling years over almost the entire

period. Again the effect is large, with the retirement age for the 2000 cohort

increases to 71.2 years, compared with 67.9 years in the baseline case.
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[Insert Table 2 here.]

It is seen from the above analysis that a decrease in g shifts up the

retirement age path (and the schooling years in recent years), but a decrease

in σ produces opposite effects. In panel (d) of Figure 5, we present the results

of g = 0.85% and σ = 0.5 (Case 4). In this case, decreases in g and σ (from

the baseline values) produce almost completely offsetting effects, resulting in

retirement age and schooling years paths similar to the baseline case. We

also consider results with different assumptions of the age that individuals

begin making economic decisions (N) and maximum age in the model (T ).

The results of N = 6 (Case 5) and T = 105 (Case 6) are given in panel (d)
of Figure 5. We see no major differences in the retirement age and schooling

years, relative to the baseline case. Our results are robust to the choice of N

and T .

To summarize, the computational results are robust with respect to r,

ρ, N and T , at least when they are within some relevant ranges. They

are less robust with respect to g and σ individually, but we also find that

simultaneous changes in g and σ can lead to retirement age and schooling

years paths close to the baseline case.

For each of the above cases, we also perform the decomposition exercises

by focusing on one exogenous change (mortality decline or productivity in-

crease) only. As seen in Table 2, we find that in each case, optimal retirement

age and schooling years always change monotonically, and these two variables

always move in the same direction.34 These results are consistent with the

theoretical results in Section 3.

5 Positive feedback and magnification

In earlier sections, we show that the impact of either a productivity or mor-

tality shock on schooling years and retirement age depends partially on a

common feedback (or interaction) term, which is determined by the inter-

action between these two endogenous variables (
∂ eS(R∗;θb)

∂R
and

∂ eR(S∗;θb,φb)
∂S

).

Proposition 1 shows that both derivatives are positive, resulting in positive

feedback.

Building on the results in earlier sections, we now examine the link be-

tween positive feedback and magnification of the effect of the exogenous

shock. Based on the analysis of (20) and (21), it can be concluded that if

the two direct effects of an exogenous shock (
∂ eS(R∗;θb)

∂ψ
or

∂ eR(S∗;θb,φb)
∂ψ

) are of

34This includes the special case that these two variables remain unchanged in response

to productivity increase when σ = 1.
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opposite signs, then positive feedback does not necessarily imply magnifica-

tion.35 On the other hand, the following Proposition states that when one

direct effect is absent or when both direct effects are of the same sign, posi-

tive feedback between schooling and retirement choices causes magnification

of the two direct effects.

Proposition 5. Consider the life-cycle model given by (1) to (4). If either

∂ eR (S∗; θb,φb)
∂ψ

= 0 and
∂ eS(R∗; θb)

∂ψ
6= 0, (35)

∂ eS(R∗; θb)
∂ψ

= 0 and
∂ eR (S∗; θb,φb)

∂ψ
6= 0, (36)

or

sign

Ã
∂ eR (S∗; θb,φb)

∂ψ

!
= sign

Ã
∂ eS(R∗; θb)

∂ψ

!
6= 0 (37)

holds, then (a) ¯̄̄̄
∂S∗

∂ψ

¯̄̄̄
>

¯̄̄̄
¯∂ eS(R∗; θb)∂ψ

¯̄̄̄
¯ , (38)

and (b) ¯̄̄̄
∂R∗

∂ψ

¯̄̄̄
>

¯̄̄̄
¯∂ eR (S∗; θb,φb)∂ψ

¯̄̄̄
¯ . (39)

As noted earlier, the second-order conditions (A5) to (A7) are assumed

to hold. With other ingredients of the model, we conclude that
∂ eS(R∗;θb)

∂R
> 0

and
∂ eR(S∗;θb,φb)

∂S
> 0. The proof of Proposition 5, which is straightforward

based on analyzing (20) and (21), is omitted.

While magnification of the direct effect occurs when any of the three con-

ditions in Proposition 5 holds, the channels of magnification differ slightly. If

(35) or (36) holds, then the non-zero direct effect is magnified by the feedback
from the other endogenous variable through the term M in (22), because

0 < ∂ eS(R∗;θb)
∂R

∂ eR(S∗;θb,φb)
∂S

< 1. If (37) holds, then the direct effect is both aug-
mented by the direct effect of the other shock and magnified by the feedback,
as seen in (20) and (21).

Are the theoretical results in Proposition 5 relevant to the two exogenous

shocks we consider? First, the impact of productivity increase is magnified

35The reason is that the two direct effects, when they are of opposite signs, may offset

each other and not lead to amplification.
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because one direct effect is absent. Second, we have checked that for mortal-

ity decline, (24) holds and (26) is positive for all cohorts.36 As a result, (37)

holds and we conclude from Proposition 5 that the total effect on optimal

schooling years or retirement age is larger than the corresponding direct ef-

fect. Quantitatively, the magnitude of amplification can be seen from Figure

6, in which we compare the impact of mortality decline when both school-

ing years and retirement age are endogenous with (a) exogenous schooling

years or (b) exogenous retirement age. From 1900 to 2000, the increase in

retirement age due to the direct effect is 9.6 years. When schooling duration

is endogenously determined, there is an extra increase in retirement age of

3.5 years (or 36.5 percent) over the direct effect. The magnification effect

on schooling years is even more dramatic. The rise in schooling years due

to the direct effect is 4.0 years from 1900 to 2000. When retirement age is

endogenously determined, the extra increase in schooling years is 6.3 years

(or 158 percent) over the direct effect.

[Insert Figure 6 here.]

Our results are related to the influential work of Ben-Porath (1967). He

shows that the optimal human capital investment at the current age (t) is

increasing in the working duration, R− t, where the compulsory retirement
age R in his model is conveniently treated as constant.37 The underlying

reason is that people usually undertake more human capital investment when

they are young, because they will have a longer duration in the future to reap

the benefit of the investment. The insight of his analysis has then been widely

accepted in the profession.

Propositions 1 and 5 contribute to the literature about the Ben-Porath

mechanism in two aspects. First, we show in Proposition 1(a) that, in an-

ticipating, for example, an increase in retirement age in the future due to

an exogenous shock, the individual chooses longer schooling years to receive

the higher benefit of human capital accumulation. Proposition 1(a) extends

Ben-Porath’s (1967) result, which is proved assuming retirement age is fixed,

to an environment in which both schooling years and retirement age are

36The statement refers to cohorts based on data in 5-year interval. On the other hand,

if we use data in 1-year interval, it is found that (26) is always positive but (24) is slightly

violated in one instance: with a value of −2.1× 10−5 in the 1948-49 interval. Fortunately,
the violation is small and transitory, and so would not alter our conclusion about the long

run trend of schooling years and retirement age, which is the focus of this paper.
37Ben-Porath (1967) used the symbol T as the retirement age; see, for example, (11) in

his paper.
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choice variables.38 Second, Proposition 5 implies that the magnitude of the

Ben-Porath effect is magnified when retirement age is also a choice variable.

When condition (37) holds, the impact of a mortality shock on schooling be-

comes higher when retirement age is endogenously determined, as compared

to the magnitude when retirement age is fixed exogenously (and thus, the

feedback from anticipated change in retirement age on schooling years is no

longer relevant). Quantitatively, the magnification effect is very substantial

for mortality decline in USA from 1900 to 2000, as observed in the lower

panel of Figure 6.

6 An extension: Including direct utility ben-
efit of schooling

In the previous sections, we have used a life-cycle model focusing purely on

the productivity-enhancing role of schooling. While the relative simplicity of

the model allows us to obtain useful results and transparent intuition, there

is a drawback when we match its predictions with the data. Even if we allow

for various combinations of mortality and productivity shocks, it is hard

to explain the negative correlation of schooling years and retirement age for

those born before the 1930s. Additionally, the effect of a productivity increase

on schooling is negative according to the model, which is contradictory to the

result in Restuccia and Vandenbroucke (2013) and the conjecture of many

researchers.

One way to fix the above inadequacy is to change some specifications

or parameter values for the computational analysis. For example, we may

consider other specifications of the compression of morbidity term to see

whether the direct effect of mortality decline on retirement age is positive or

negative. Relaxing the assumption of constant rate of productivity increase

to allow for different rates of productivity improvement at different sub-

periods may also be helpful. We leave these channels to be explored in future

work focusing on quantitative analysis.39 To keep the theoretical focus of this

38Ben-Porath (1967) is interested to know why an individual engages more in human

capital investment at a young age. His analysis focuses on an individual of a particular
cohort, and the assumption of a fixed retirement age (of people of the same cohort) is
reasonable. On the other hand, we study how mortality decline and productivity increase,

by changing expected lifetime wealth, may affect life-cycle choices (including schooling) of

individuals of different cohorts. In this context, the assumption of an unchanged retirement
age (for different cohorts) is less desirable, and it is better to allow both schooling years

and retirement age to be endogenously determined.
39Another possibility is to include social security and the changes in social security

29



paper, we decide not to take this route, but instead to extend our model and

perform further theoretical analysis.

In this section, we address these issues by adding one ingredient to the

model in Section 2, and we consider only the effect of productivity increase.40

In the extended model, we make two changes. First, we do not consider

mortality decline in this section and, simply use the notations μ(x) and l (x)
to represent these cohort-invariant functions. Second, instead of objective

function (2), we assume that the individual maximizesZ T

0

exp (−ρx) l (x) c (x)
1− 1

σ − 1
1− 1

σ

dx+

Z S

0

exp (−ρx) l (x) ζdx

−
Z R

W

exp (−ρx) l (x) ν (x) dx, (40)

where ζ is flow utility of schooling, and is assumed to be non-negative. This

modified objective function incorporates direct utility benefit of schooling,

as in Bils and Klenow (2000) and Restuccia and Vandenbroucke (2013). The

other aspects of the model captured by (1), (3) and (4) remain the same.

It can be shown that the first-order conditions are now given by (8) and

φbh
0
³eS (R)´ ∙Z R

eS(R) exp (−rx) l (x) dx
¸
+ η

³eS (R) , R;φb´
= φb exp

³
−reS (R)´ l ³eS (R)´h³eS (R)´ , (41)

where

η
³eS (R) , R;φb´ = exp

³
−ρeS (R)´ l ³eS (R)´ ζ

(φb)
− 1

σ

h
cn
³
0, eS (R) , R´i− 1

σ

. (42)

(Detailed derivations for this model are given in an Appendix available upon

request.) The first-order condition (8) for retirement age is unaffected by

benefits over time, which is particularly relevant for advanced countries in the last few

decades. See, for example, Gruber and Wise (1998, 1999).
40Some researchers, such as Hansen and Lønstrup (2012) and Sánchez-Romero et al.

(2016), have focused on using mortality changes to explain the negative correlation of

schooling years and retirement age. While the analysis in Section 3.3 has pointed out that

it is possible to do so by specifying various factors in (26) such that the direct effect of a

mortality decline on retirement age is strongly negative, we believe it may not be the best

approach, partly because of our computational results (in Table 2) that the direct effect of

mortality decline on retirement age is always positive. Moreover, such an approach does

not explain the positive effect of a productivity increase on schooling years. Our proposed

method deals with both issues. Cai (2017, Chapter 3) also examines similar issues.
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the introduction of the direct utility of schooling term. On the other hand,

compared with (7) of the model in Section 2, we notice that the marginal

cost of extending schooling years, given by the right-hand side term of (41),

remains the same, but the marginal benefit now consists of two terms. The

first term on the left-hand side of (41) represents the productivity-enhancing

effect, which is the same as in (7). Additionally, the individual is assumed

to have direct utility from schooling. The marginal direct utility due to

schooling is given by exp
³
−ρeS (R)´ l ³eS (R)´ ζ. Converting this term into

monetary units (by dividing it by the marginal utility of consumption) leads

to the second term on the left-hand side of (41).

Similar as the analysis in Section 3, we first obtain the relations between

the two endogenous variables. It is shown that

∂ eS(R∗;φb)
∂R

=

φbh
0 (S∗) exp (−rR∗) l (R∗) + 1

σ
η (S∗, R∗;φb)

∙
exp(−rR∗)l(R∗)R R∗
S∗ exp(−rx)l(x)dx

¸
∆S

,

(43)

and

∂ eR(S∗;φb)
∂S

=

h0(S∗)
h(S∗) − 1

σ
1

cn(0,S∗,R∗)
∂cn(0,S∗,R∗)

∂S

r − ρ+ 1
σ

exp(−rR∗)l(R∗)R R∗
S∗ exp(−rx)l(x)dx

+ 1
ν(R∗)

∂ν(R∗)
∂x

, (44)

where

∆S = φb exp (−rS∗) l (S∗)h (S∗)
∙
2h0 (S∗)
h (S∗)

− h
00 (S∗)
h0 (S∗)

− μ (S∗)− r
¸

+η (S∗, R∗;φb)

"
h00 (S∗)
h0 (S∗)

+
1

σ

η (S∗, R∗;φb)

φbh (S
∗)
R R∗
S∗ exp (−rx) l (x) dx

+ μ (S∗) + ρ

#
> 0.

(45)

The intuition of various terms in (43) and (44) is as follows. A change in re-

tirement age (R) affects the first-order condition (41) of schooling years, both

through the productivity-enhancing and direct utility benefit terms. First,

it affects the duration that the individual can reap the benefit of schooling.

This is represented by the first term on the numerator of (43). We label

this the Ben-Porath effect. Second, it affects the direct utility term (through
the marginal utility of consumption), as given in the second term of the nu-

merator of (43). We label it the direct utility of schooling effect. Note that
when ζ = 0, the direct utility of schooling effect disappears. On the other
hand, a change in schooling years (S) affects the first-order condition (8)

of retirement age in two ways. First, it affects the wage rate through the

term
h0(S∗)
h(S∗) related to the human capital formation. This is given in the first
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term on the numerator of (44). We label it the return to schooling effect.
Second, a change in schooling years affects the individual’s lifetime wealth,

as captured by the level of normalized consumption at age 0. This is given

in the second term on the numerator of (44). Moreover, it can be shown

that −1
cn(0,S∗,R∗)

∂cn(0,S∗,R∗)
∂S

= η(S∗,R∗;φb)
φbh(S

∗)
R R∗
S∗ exp(−rx)l(x)dx

, and it is positive when ζ

is positive. We label it the consumption level effect. On the other hand,
for the model in Section 2, 1

cn(0,S∗,R∗)
∂cn(0,S∗,R∗)

∂S
= 0, because of (7).41 As a

result, the consumption level effect disappears in that model.

It can be concluded from (43) and (44) that
∂ eS(R∗;φb)

∂R
> 0 and ∂ eR(S∗;φb)

∂S
>

0. Thus, positive feedback between them continues to hold in the presence

of direct utility benefit of schooling.

To examine the total effect of productivity increase on schooling years or

retirement age, we first consider the two direct effects. For this model, it can

be shown that
∂ eR(S∗;φb)

∂φb
is the same as (19) of the model in Section 2, but

∂ eS(R∗;φb)
∂φb

=
− ¡1− 1

σ

¢
1
φb
η (S∗, R∗;φb)

∆S

. (46)

If 0 < σ < 1 according to (23), it can be shown that one direct effect is pos-

itive (
∂ eS(R∗;φb)

∂φb
> 0) and the other negative (∂

eR(S∗;φb)
∂φb

< 0). In the extended
model, the exogenous effect is neither purely positive nor purely negative.

Combining this feature with positive feedback between the two endogenous

variables (positive endogenous effect), the total effects of productivity in-

crease on schooling years and retirement age depend on the underlying pa-

rameters of this model, as given in the following Proposition.

Proposition 6. Consider the life-cycle model with the direct utility benefit
of schooling and an exogenous process of productivity increase, as given by
(1), (3), (4) and (40), where θb is cohort-invariant. If (23) holds, then
(a) ∂S∗

∂φb
< 0 and ∂R∗

∂φb
< 0 if

0 < ζ <

"
exp [−ρ (R∗ − S∗)] l(R∗)

l(S∗)
h0(S∗)
h(S∗)

r − ρ+ 1
ν(R∗)

∂ν(R∗)
∂x

#
ν (R∗) ; (47)

41The intuition is as follows. When ζ = 0, it can be shown that one objective

of the individual is to maximize lifetime wealth. Thus, 1
cn(0,S∗,R∗)

∂cn(0,S∗,R∗)
∂S = 0.

When ζ > 0, there is a non-pecuniary effect, and thus, at the optimal choice, human
capital is accumulated “too much” as compared with the model with ζ = 0. Thus,

1
cn(0,S∗,R∗)

∂cn(0,S∗,R∗)
∂S < 0.
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(b) ∂S∗
∂φb

> 0 and ∂R∗
∂φb

< 0 if"
exp [−ρ (R∗ − S∗)] l(R∗)

l(S∗)
h0(S∗)
h(S∗)

r − ρ+ 1
ν(R∗)

∂ν(R∗)
∂x

#
ν (R∗) < ζ

<

⎡⎣exp [(r − ρ) (R∗ − S∗)]
h
2h0(S∗)
h(S∗) − h00(S∗)

h0(S∗) − μ (S∗)− r
i

h0(S∗)
h(S∗) − h00(S∗)

h0(S∗) − μ (S∗)− ρ

⎤⎦ ν (R∗) ; (48)

and
(c) ∂S∗

∂φb
> 0 and ∂R∗

∂φb
> 0 if

ζ >

⎡⎣exp [(r − ρ) (R∗ − S∗)]
h
2h0(S∗)
h(S∗) − h00(S∗)

h0(S∗) − μ (S∗)− r
i

h0(S∗)
h(S∗) − h00(S∗)

h0(S∗) − μ (S∗)− ρ

⎤⎦ ν (R∗) . (49)

Proposition 6 specifies the conditions which lead to the three possible

outcomes. These outcomes are represented graphically in Figure 7.42 The

interpretations of the conditions are as follows. When the extent of utility

benefit of schooling (ζ) is small and (47) holds, then the direct effect of

productivity increase on schooling years is not strong enough. Thus, the

indirect effect dominates and the total effect (∂S
∗

∂φb
) is still negative. Similarly,

∂R∗
∂φb

is negative. The model in Section 2, with ζ = 0, could be treated as a

limiting case of part (a). When ζ is large enough, the direct effect dominates

and the total effect ∂S∗
∂φb

turns positive. Furthermore, we find that when ζ is

larger than the first threshold in (48) but not the second one, we have the

results ∂S∗
∂φb

> 0 and ∂R∗
∂φb

< 0, as in part (b). The two thresholds correspond

to the upward-sloping dotted lines in Figure 7. When ζ is substantially large

to pass the higher threshold, we have ∂S∗
∂φb

> 0 and ∂R∗
∂φb

> 0, as in part (c).43

[Insert Figure 7 here.]

The results in Proposition 6 imply that the extended model is able to

explain the negative correlation of schooling years and retirement age, pro-

vided that the flow utility of schooling is in the intermediate range given by

42Note that ζ only affects (41) through (42), but does not affect (8). As a result, different

values of ζ in the three cases in Figure 7 are reflected in different positions of eS(R∗;φ2)
but the position of eR(S∗;φ2) remains unchanged.
43In case (c), the direct effect

∂ eR(S∗;φb)
∂φb

is negative, but the total effect ∂R∗
∂φb

is positive,

because ζ is very large and the indirect effect (through the endogenous change in schooling

years) is very strong. We believe this case is not empirically important, but we list all

three cases in Proposition 6 for the sake of completeness.
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(48). Moreover, they have relevance for the results in Restuccia and Vanden-

broucke (2013). In that paper, retirement age is assumed to be exogenous.

We can see from (20) and (46) that we only need ζ > 0 to guarantee that
∂ eS(R∗;φb)

∂φb
> 0 in that environment. On the other hand, when retirement age

is also a choice variable, we need parameter ζ to be not only positive, but

also larger than the lower threshold in (48) in order to explain the positive

total effect of productivity increase on schooling years (∂S
∗

∂φb
> 0).

7 Conclusion

Mortality decline and productivity increase are two major forces affecting

expected lifetime wealth of different cohorts over the twentieth century. In

this paper, we study the impact of these two events in a life-cycle model with

both schooling and retirement choices. After a careful analysis of the effect

of mortality decline or productivity increase on schooling years or retirement

age, we find it helpful to decompose the effect in terms of the exogenous

(shock) and endogenous (feedback) components. Based on this framework,

we obtain three main sets of results, which enhance our understanding of

the mechanism determining the effects of these shocks. The results also have

implications relevant to the economic demography literature.

First, we show in Proposition 1 that optimal retirement age increases in

response to a rise in schooling years, and optimal schooling duration also rises

in response to an (anticipated) increase in retirement age. Positive feedback

exists between these two endogenous variables, and we further trace it to the

underlying economic factors captured in the baseline and extended models.

In the presence of positive feedback between schooling years and retire-

ment age, we then examine, in Propositions 2, 3, 4 and 6, the sign of the

effects of either a mortality or productivity shock on these two endogenous

variables. In particular, we show in Proposition 4(b) that a negative direct

effect of a mortality decline on retirement age (i.e., when (26) is negative),

which is the necessary and sufficient condition for a mortality decline to af-

fect retirement age negatively when schooling duration is exogenous, is only

a necessary condition when schooling duration is endogenous. This result

implies that the lifetime human wealth channel suggested by d’Albis et al.

(2012) is less likely to explain the decreasing trend of retirement age when

the schooling duration also responds to mortality decline.

We further examine the magnitude of the effects of either a mortality or

productivity shock on the schooling years and retirement age. Proposition

5 shows that the direct effect of an exogenous shock on either schooling or

retirement choice is magnified in the presence of another endogenous variable,
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when exactly one of the direct effects is zero or when both direct effects are of

the same sign. Together with Proposition 1(a) and the computational results,

our analysis not only extends Ben-Porath’s (1967) result to an environment

in which both schooling years and retirement age are choice variables, but

also shows that the impact of mortally decline on schooling years is magnified

substantially in such an environment.

8 Appendix

We derive first-order and second-order conditions of the main model in Sec-

tion 8.1, and provide detailed analysis for some comparative static exercises

in Section 8.2.

8.1 First-order and second-order conditions

We first obtain the individual’s optimal consumption path, conditional on

schooling years and retirement age. Using standard techniques of dynamic

optimization, it is straightforward to obtain (5).

The intertemporal budget constraint at age 0 is given byZ T

0

exp (−rx) l(x; θb)c (x, S,R; θb,φb) dx =
Z R

S

exp (−rx) l(x; θb)φbh (S) dx.

Differentiating this equation with respect to R and S, respectively, we obtainZ T

0

exp (−rx) l(x; θb)∂c (x, S,R; θb,φb)
∂S

dx

= φb

∙
h0 (S)

Z R

S

exp (−rx) l(x; θb)dx− exp (−rS) l (S; θb)h (S)
¸
, (A1)

andZ T

0

exp (−rx) l(x; θb)∂c (x, S,R; θb,φb)
∂R

dx = exp (−rR) l(R; θb)φbh (S) .
(A2)

Conditional on the optimal consumption path (5), we now obtain the

first-order necessary conditions for optimal schooling years and retirement

age. Substitute (5) into (2) to express the objective function in terms of S

and R only. Denote it by

Ub (S,R) =

Z T

0

exp (−ρx) l(x; θb)c (x, S,R; θb,φb)
1− 1

σ − 1
1− 1

σ

dx
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−
Z R

W

exp (−ρx) l(x; θb)ν(x; θb)dx.

Differentiating Ub (S,R) with respect to S and using (A1) to simplify, we
obtain

∂Ub (S,R)

∂S

= (φb)
1− 1

σ cn (0, S,R; θb)
− 1

σ

∙
h0 (S)

Z R

S

exp (−rx) l(x; θb)dx− exp (−rS) l(S; θb)h (S)
¸

≡ a1F (S,R), (A3)

where a1 = (φb)
1− 1

σ cn (0, S,R; θb)
− 1

σ and F (S,R) is the remaining term.
Since a1 is non-zero, the first-order condition for schooling is given by F (S,R) =
0, or equivalently, (7).
Differentiating Ub (S,R) with respect to R and using (A2) leads to

∂Ub (S,R)

∂R
= l(R; θb)

h
(φb)

1− 1
σ exp (−rR)h (S) cn (0, S, R; θb)−

1
σ − exp (−ρR) ν(R; θb)

i
≡ a2G(S,R), (A4)

where a2 = l(R; θb) and G(S,R) is the remaining term. Since a2 is non-
zero, the first-order condition for retirement age is given by G(S,R) = 0, or
equivalently, (8).

The corresponding second-order sufficient conditions, evaluated at the

optimal choices, are: (a)
∂2Ub(S

∗,R∗)
∂S2

< 0, which is equivalent to

2h0 (S∗)
h (S∗)

− h
00 (S∗)
h0 (S∗)

− μ (S∗; θb)− r > 0, (A5)

(b)
∂2Ub(S

∗,R∗)
∂R2

< 0, which is equivalent to

r − ρ+
1

σ

exp (−rR∗) l (R∗; θb)R R∗
S∗ exp (−rx) l (x; θb) dx

+
1

ν (R∗; θb)
∂ν (R∗; θb)

∂x
> 0, (A6)
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and (c)
∂2Ub(S

∗,R∗)
∂S2

∂2Ub(S
∗,R∗)

∂R2
−
h
∂2Ub(S

∗,R∗)
∂S∂R

i2
> 0, which is equivalent to44

1− ∂S∗

∂R

∂R∗

∂S
> 0. (A7)

8.2 Comparative static analysis

Combining (7) to (10), the optimal choices S∗ and R∗ are related by

h0 (S∗)
∙Z R∗

S∗
exp (−rx) l(x; θb)dx

¸
= exp (−rS∗) l (S∗; θb)h (S∗) , (A8)

and

(φb)
1− 1

σ exp (−rR∗)h (S∗) [cn (0, S∗, R∗; θb)]−
1
σ = exp (−ρR∗) ν (R∗; θb) .

(A9)

We differentiate (A8) totally to obtain∙
2h0 (S∗)
h (S∗)

− h
00 (S∗)
h0 (S∗)

− μ (S∗; θb)− r
¸
dS∗

=
exp (−rR∗) l (R∗; θb)R R∗
S∗ exp (−rx) l(x; θb)dx

dR∗ +

" R R∗
S∗ exp (−rx) ∂l(x;θb)

∂θb
dxR R∗

S∗ exp (−rx) l(x; θb)dx
−

∂l(S∗;θb)
∂θb

l(S∗; θb)

#
dθb,

(A10)

and differentiate (A9) totally to obtain∙
r − ρ+

1

σ

1

cn (0, S∗, R∗; θb)
∂cn (0, S∗, R∗; θb)

∂R
+

1

ν (R∗; θb)
∂ν (R∗; θb)

∂x

¸
dR∗

=

∙
h0 (S∗)
h (S∗)

− 1
σ

1

cn (0, S∗, R∗; θb)
∂cn (0, S∗, R∗; θb)

∂S

¸
dS∗ +

µ
1− 1

σ

¶
1

φb
dφb

−
∙
1

σ

1

cn (0, S∗, R∗; θb)
∂cn (0, S∗, R∗; θb)

∂θb
+

1

ν (R∗; θb)
∂ν (R∗; θb)

∂θb

¸
dθb. (A11)

44It can be seen from (A3) and (A4) that the first-order condition for S is defined by
∂Ub
∂S = a1F (S,R) = 0, and that for R is defined by

∂Ub(S,R)
∂R = a2G(S,R) = 0. Therefore,

at the optimal choices S∗ and R∗, ∂
2Ub
∂S2 = a1

∂F
∂S ,

∂2Ub
∂R2 = a2

∂G
∂R , and

∂2Ub
∂S∂R = a1

∂F
∂R = a2

∂G
∂S .

Thus, ∂
2Ub
∂S2

∂2Ub
∂R2 −

h
∂2Ub
∂S∂R

i2
> 0 is equivalent to 1−

³
∂F/∂R
∂F/∂S

´³
∂G/∂S
∂G/∂R

´
> 0, which can be

simplified to (A7), because ∂S∗
∂R = −∂F/∂R

∂F/∂S and ∂R∗
∂S = − ∂G/∂S

∂G/∂R . Alternatively, we can

differentiate Ub (S,R) directly to obtain an expression similar to (A5) and (A6). That
expression can be shown to be equivalent to (A7), after using (14) and (16). We prefer

(A7) as it is directly useful for subsequent analysis.
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Straightforward manipulation of (A10) and (A11) leads to various terms in

Section 3.

The following analysis is useful for the impact of mortality decline in

Section 3.3. Because of (1), we have

∂l(x; θb)

∂θb
= l(x; θb)

Z x

0

µ
−∂μ(t; θb)

∂θb

¶
dt. (A12)

Using (A12), it can be shown thatR R∗
S∗ exp (−rx) ∂l(x;θb)

∂θb
dxR R∗

S∗ exp (−rx) l(x; θb)dx
−

∂l(S∗;θb)
∂θb

l(S∗; θb)

=

R R∗
S∗ exp (−rx) l(x; θb)

R x
0

³
−∂μ(t;θb)

∂θb

´
dtdxR R∗

S∗ exp (−rx) l(x; θb)dx
−
Z S∗

0

µ
−∂μ(t; θb)

∂θb

¶
dt

=

R R∗
S∗ exp (−rx) l(x; θb)

hR S∗
0

³
−∂μ(t;θb)

∂θb

´
dt+

R x
S∗

³
−∂μ(t;θb)

∂θb

´
dt
i
dxR R∗

S∗ exp (−rx) l(x; θb)dx
−
Z S∗

0

µ
−∂μ(t; θb)

∂θb

¶
dt

=

R R∗
S∗ exp (−rx) l(x; θb)

R x
S∗

³
−∂μ(t;θb)

∂θb

´
dtdxR R∗

S∗ exp (−rx) l(x; θb)dx
. (A13)

We also differentiate cn (0, S∗, R∗; θb) in (6) with respect to θb and use

(A12) to obtain

1

cn (0, S∗, R∗; θb)
∂cn (0, S∗, R∗; θb)

∂θb
=

R R∗
S∗ exp (−rx) l(x; θb)

hR x
0

³
−∂μ(t;θb)

∂θb

´
dt
i
dxR R∗

S∗ exp (−rx) l(x; θb)dx

−
R T
0
exp {− [(1− σ) r + σρ]x} l(x; θb)

hR x
0

³
−∂μ(t;θb)

∂θb

´
dt
i
dxR T

0
exp {− [(1− σ) r + σρ]x} l(x; θb)dx

. (A14)

8.3 Proof of Proposition 1

It is straightforward to conclude that the denominator of (14) is positive

because of (A5), and the numerator of (14) is positive. Therefore,
∂ eS(R∗;θb)

∂R
>

0. This proves (a).
Similarly, the denominator of (16) is positive because of (A6). On the

other hand, the return to schooling is positive under reasonable assumptions

and thus, the numerator of (16) is positive. Therefore,
∂ eR(S∗;θb,φb)

∂S
> 0. This

proves (b).
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8.4 Proof of Proposition 2

We observe from (20) and (21) that when ψ = φb, each of the two total

effects (∂S
∗

∂φb
or ∂R∗

∂φb
) depends on

∂ eR(S∗;θb,φb)
∂φb

only, since the other direct effect

(
∂ eS(R∗;θb)

∂φb
) is zero. When (23) holds, it is easy to conclude from (19) and (A6)

that
∂ eR(S∗; θb,φb)

∂φb
< 0. (A15)

According to Proposition 1(a),
∂ eS(R∗;θb)

∂R
is positive. Moreover, according

to (A7), 1− ∂ eS(R∗;θb)
∂R

∂ eR(S∗;θb,φb)
∂S

> 0. Combining the above results, it is easy
to conclude that ∂S∗

∂φb
and ∂R∗

∂φb
are of the same sign as that of the direct effect

∂ eR(S∗;θb,ξb)
∂φb

, which is negative according to (A15).
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Figure 1. Mortality Decline and Productivity Increase in the USA
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Figure 7. The Impact of Productivity Increase for the Extended Model 
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Parameter Meaning Value 
ρ Subjective discount rate 3% 
r Real interest rate 3% 
g Growth rate of productivity 1.27% 
σ Intertemporal elasticity of substitution 0.6 
N The age that individuals begin making 

economic decisions 
10 

T Maximum age in the model 100 
γ Free parameter in human capital function 0.0482 
λ Free parameter in human capital function 0.948 
δ Free parameter in disutility function 40.2 

Table 1: Parameters of the Baseline Model 



 

Table 2: Sensitivity Analysis 

    Mortality decline & productivity  
increase Mortality decline only Productivity  increase only 

Cases Values RMSE  R*+N S*+N-6 R*+N S*+N-6 R*+N S*+N-6 

Baseline / 0.302 

1900 65.0 8.22 65.0 8.22 65.0 8.22 
Max. value 69.0 13.71 78.1 18.45 65.0 8.22 

(Year) (1950) (1990) (2000) (2000) (1900) (1900) 
2000 67.9 13.67 78.1 18.45 53.0 5.29 

1a 𝑟𝑟 = 4%; 
𝜌𝜌 = 4% 

0.303 

1900 65.0 8.21 65.0 8.21 65.0 8.21 
Max. value 69.4 13.82 78.9 18.03 65.0 8.21 

(Year) (1950) (1995) (2000) (2000) (1900) (1900) 
2000 68.3 13.81 78.9 18.03 52.3 5.47 

1b 𝑟𝑟 = 5%; 
𝜌𝜌 = 2% 0.305 

1900 65.0 8.17 65.0 8.17 65.0 8.17 
Max. value 69.0 14.15 76.4 17.14 65.0 8.17 

(Year) (1965) (2000) (2000) (2000) (1900) (1900) 
2000 68.4 14.15 76.4 17.14 56.0 6.38 

2a 𝑔𝑔 = 1% 0.263 

1900 65.0 8.30 65.0 8.30 65.0 8.30 
Max. value 70.1 14.14 77.7 17.46 65.0 8.30 

(Year) (1965) (2000) (2000) (2000) (1900) (1900) 
2000 69.8 14.14 77.7 17.46 53.1 5.56 

2b 𝑔𝑔 = 2% 0.615 

1900 65.0 8.05 65.0 8.05 65.0 8.05 
Max. value 67.1 13.27 79.5 21.88 65.0 8.05 

(Year) (1940) (1945) (2000) (2000) (1900) (1900) 
2000 62.4 11.56 79.5 21.88 52.6 4.43 

3a 𝜎𝜎 = 0.5 0.541 

1900 65.0 8.08 65.0 8.08 65.0 8.08 
Max. value 67.3 13.22 78.9 21.23 65.0 8.08 

(Year) (1940) (1945) (2000) (2000) (1900) (1900) 
2000 63.3 12.02 78.9 21.23 47.6 4.10 

3b 𝜎𝜎 = 0.7 0.250 

1900 65.0 8.34 65.0 8.34 65.0 8.34 
Max. value 71.2 14.39 77.6 16.90 65.0 8.34 

(Year) (1995) (2000) (2000) (2000) (1900) (1900) 
2000 71.1 14.39 77.6 16.90 57.2 6.58 

3c 𝜎𝜎 = 1 0.252 

1900 65.0 8.48 65.0 8.48 65.0 8.48 
Max. value 77.1 15.06 77.1 15.06 / / 

(Year) (2000) (2000) (2000) (2000) / / 
2000 77.1 15.06 77.1 15.06 65.0 8.48 

3d 𝜎𝜎 = 1.5 0.263 

1900 65.0 8.52 65.0 8.52 65.0 8.52 
Max. value 81.8 15.22 77.0 14.22 71.0 9.37 

(Year) (2000) (2000) (2000) (2000) (2000) (2000) 
2000 81.8 15.22 77.0 14.22 71.0 9.37 

4 𝜎𝜎 = 0.5 
𝑔𝑔 = 0.85%; 0.302 

1900 65.0 8.22 65.0 8.22 65.0 8.22 
Max. value 69.0 13.71 77.9 18.42 65.0 8.22 

(Year) (1950) (1990) (2000) (2000) (1900) (1900) 
2000 67.8 13.68 77.9 18.42 47.8 4.50 

5 𝑁𝑁 = 6 0.304 

1900 65.0 8.22 65.0 8.22 65.0 8.22 
Max. value 68.8 13.64 77.7 18.04 65.0 8.22 

(Year) (1950) (1990) (2000) (2000) (1900) (1900) 
2000 67.6 13.59 77.7 18.04 52.4 4.25 

6 𝑇𝑇 = 105 0.302 

1900 65.0 8.22 65.0 8.22 65.0 8.22 
Max. value 69.0 13.70 78.1 18.45 65.0 8.22 

(Year) (1950) (1990) (2000) (2000) (1900) (1900) 
2000 67.9 13.67 78.1 18.45 53.0 5.29 




