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Abstract

When referring to actuarial analysis of lifetime, only models accounting for observable risk
factors have been developed. Within this context, Cox proportional hazards model (CPH model)
is commonly used to assess the effects of observable covariates as gender, age, smoking habits,
on the hazard rates. These covariates may fail to fully account for the true lifetime interval. This
may be due to the existence of another random variable (frailty) that is still being ignored.
The aim of this paper is to examine the shared frailty issue in the Cox proportional hazard model
by including two different parametric forms of frailty into the hazard function. Four estimated
methods are used to fit them. The performance of the parameter estimates of observed covariates
is assessed and compared to the classical Cox model and then to these frailty models through a
general simulation study. This performance is investigated in terms of the bias of point estimates
and their empirical standard errors in both fixed and random effect parts. This simulation study
showed differences between classical Cox model and shared frailty model.
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1 Introduction

In actuarial science and demography, survival data, or time to-event-data, measure the time elapsed
from a given date of birth to the occurrence of an event of interest (the death). These are used
extensively to derive different types of life tables.

The major problem to get these life tables is due to the heterogeneity of population which can
be defined as the blend of individuals with dissimilar hazards and then with substantially different
mortality rates or lifetimes. Several aspect of this heterogeneity are observable, as gender, smoking
status, socioeconomic class, occupation etc. whilst others like the individual’s attitude towards
health, environmental factors, and some genetic characteristics are unobservable. Actuarial prac-
tice and also literature for life insurance have not included all relevant covariates related to lifetime.
Sometimes because they don’t know the values of the factor for each individual or sometimes it’s
due to difficulties inherent in their modeling.
Most commonly, survival data are handled by means of the proportional hazards model, which
was first introduced by Cox (1972) and was widely known as the Cox regression model. The central
objective of this model is to assess the effects on time to event of only observable covariates by esti-
mating their coefficients. Thus, the conventional Cox model does not always provide an adequate
fit to the data and then can generates biases and affects variances of the parameter estimates. One
of the reasons is due to the omission of relevant covariates representing information that cannot
be observed or have not been observed (univariate case) (Gail and al., 1984; Chamberlain ,1985;
Trussel and Rodrigues, 1990). Another reason can be explained by the violation of the traditional
assumption that event times are statistically independent and identically distributed when ob-
served covariates are included. In fact, certain individual are linked by criteria that may share
several of the above common unobserved factors (multivariate case)(Abrahantes and al, 2005).

For practical and simplicity reasons, such unobservable covariates are often ignored by consid-
ering them as a part of the error component and not controlled in conventional survival analysis.
Then, heterogeneity due to unobserved covariates is added to the measurement error of observed
covariates, and this increases the total variability of the hazard function and produces biased re-
gression coefficient estimates. In such case of human life expectancy studies, no matter how many
covariates we want to add, it will never be the complete one (Karim and Latif, 2008).

Therefore, during recent years, several extensions of the Cox proportional hazards model have
been developed and lead to what are called "hidden heterogeneity" or "frailty" models. The basic
inherent idea is that the hazard function depends upon an unobservable random quantity that
impacts multiplicatively on it. Originally, Beard (1959) and Vaupel et al. (1979) proposed a random
effects model in order to account for unobserved heterogeneity due to unobserved susceptibility to
death. In their studies, the concept of frailty has been introduced and applied in univariate survival
models. Their purpose behind introducing the random frailty effect to a Biostatistics framework
was to improve the fit of mortality models in a given population.Later,Vaupel and Yashin (1985)
used frailties model to explain the deviant behavior of mortality rates at older ages.

Hence, several models have been developed to take into account different forms of frailty
between individuals. Most of the literature distinguishes between univariate and multivariate
survival models where frailties may be individual-specific or group-specific respectively. One
important model in the multivariate set is the shared frailty model. From a modeling point of
view, the univariate frailty model is a special case of the shared frailty model with cluster size one.
Because of this, we shall chiefly refer to the second. However, the interpretation of the two models
is different. In the former case, the frailty distribution variability is related to a measure of over
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dispersion between individuals, whereas it is rather interpreted as a measure of dependence in the
latter.

The shared frailty model was introduced to the literature by David Clayton (1978) and was
considered in the bivariate case without exploiting the notion of frailty. Later, this model was
extended to multivariate case and was discussed in details by Hougaard (2000), Therneau and
Grambsch (2000), Duchateau et al. (2002, 2003), and Duchateau and Janssen (2004). It is consid-
ered as a conditional independence model in which, given the frailty, all event times in a cluster are
independent. It is also known as a mixture model because the frailties in each cluster are assumed
to be random.

The principal problem with the use of such models is parameters estimation. This explains why
various estimation approaches have been proposed in literature, McGilchrist and Aisbett (1991),
Nielsen et al. (1992), Xue and Brookmeyer (1996), Ripatti et al. (2000, 2002), Vaida and Xu (2000)
and Cortinas and Burzykowski (2004, 2005). Each method presents its advantages and drawbacks.

One of the fundamental objectives of this work is to identify particular situations and specific
portfolios of insurers where this shared frailty model is applicable and preferable to classical (con-
ventional) Cox’s proportional hazards model and when it becomes inaccurate to use such model.
The second aim of this work is to compare several frequentist estimation approaches of frailty mod-
els and studying their limitations for different parameter combinations. Therefore we compare a
conventional Cox model with four versions of the frailty models differentiated by their frequentist
estimation procedures. Bayesian approach, that offers an alternative, will not be studied here. For
the shared gamma frailty estimation, we used the EM algorithm approach introduced by Nielsen
and al (1992) and later approximated by the Penalized Partial Likelihood solution, Therneau and
Grambsch (2000). For the shared Gaussian frailty estimation, we used three estimation procedures:
the REML estimation approach proposed byMcGilchrist and Aisbett (1991) and later approximated
too by Penalized Partial Likelihood solution, Therneau and Grambsch (2000); the approximated
marginal likelihood approach suggested by Ripatti and Palmgren (2000); and the Monte Carlo
EM method (MCEM) proposed by Vaida and Xu (2000).The principal reason behind this choice
was software availability and feasibility of conducting a simulation study. We implement these
versions with available R-packages presented in section 4.3.
Such comparison through a simulation study is not new in the statistical litterature. There has
been different studies to compare various shared frailty models. Lorino et al (2004) analyzed
three models including fixed or random cluster effects with a conventional Cox model, Cortinas
Abrahantes (2005) and Karim and Latif (2008) compared the performance of four estimation pro-
cedures available for proportional hazards models with random effects, Hirsch and Wienke (2012)
conducted a large simulation study to compare the performance of different statistical software for
the analysis of shared frailty mdels.

In contrast to the abundant literature applied to biostatistic context, financial and especially
actuarial studies taking into account unobservable heterogeneity are still scare. For this purpose,
the aim of this paper that makes the difference with the existing literature is to provide, by means
of simulation studies in a comprehensive way, a guideline for actuaries on the performance of
the Beta estimates from various characteristics of their database. New models are not proposed,
rather, the effects of taking into account different heterogeneity models on the value of estimate
covariates are discussed.
The paper is organized as follows. The shared frailty model, its conditional and marginal likelihood
are shown in section 2. We outline briefly the estimation methods in section 3. Section 4, presents
a general framework investigating by means of many simulations the bias and the efficiency of
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the estimated regression coefficients for a variety of situations in particular for a classical Cox
model and shared frailty model in a more general framework. Finally, section 5 draws remarks
and conclusions based on the obtained results of simulations.

2 Theoretical consideration

2.1 Cox model with shared random Effects

In the following, we will consider clustered survival data from a total of N individuals that come
from g different clusters. The failure-time variable corresponding to individual j( j = 1, ...,ni) from
cluster i(i = 1, ..., g) will be denoted by Yi j. It is assumed that the individual j in the cluster i is
observed until either an event time Yi j or a non-informative right-censoring time Ci j independent
of Yi j. Thus, we observe Ti j = min(Yi j,Ci j) and let δi j = 1{Ti j≤Di j} be the censoring indicator with δi j
equal to 1 if Ti j = Yi j, and 0 if Ti j = Ci j.

The general mixed-effects proportional hazards model for such data Ti j is given by

λ(ti j

∣∣∣βi, bi
)

= λ0(ti j) wi j exp
(
xt

i jβi

)
= λ0(ti j) exp

(
xt

i jβi + zt
i jbi

)
where λ(ti j |.) is the conditional hazard function for the jth individual from the ith cluster at time
ti j, λ0(ti j) is the baseline hazard function at time ti j, βi is a vector of cluster-specific fixed-effects
corresponding to a vector of covariates xi j, and bi is a vector of random effects associated with a
vector of covariates zi j.

In what follows, we must distinguish between "frailties" wi and "random effects" bi, Wi j = ezt
i jbi .

Shared frailty model reduces to Cox’s proportional hazards model with bi = 0 i.e. Wi j = 1. Here,
this random effects bi are assumed to be randomly distributed with mean 0 and variance-covariance
matrix Σ = Σ(Θ), which depends on a d-dimensional vector of parameters Θ = (θ1, θ2, ..., θd). This
paper focus only on simplest case d = 1. Therefore, we consider, Θ = θ and Σ = Σ(Θ) = Σ(θ). The
density function of the bi which, except for θ, is assumed to be known, will be denoted by f (bi).

2.2 Likelihood Construction

Under assumptions of non-informative right-censoring and of independence between the censor-
ing time and the survival times Yi j, given the random effects bi, observations within cluster i are
assumed to be conditionally independent. Therefore, considering independence between clusters,
the conditional likelihood function, denoted by LC, takes the form

LC(β, λ0, b) =

g∏
i=1

LC
i (βi, λ0, bi) =

g∏
i=1

exp{lCi (βi, λ0, bi)} (1)

where

lCi (βi, λ0, bi) =

ni∑
j=1

[
δi j

(
logλ0(ti j) + xt

i jβi + zt
i jbi

)
−Λ0(ti j)exp

(
xt

i jβi + zt
i jbi

)]
(2)
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is the conditional log-likelihood for the observed data in the ith cluster, and β and b denote the
vectors resulting from "piling" vectors βi and bi for all clusters, respectively. Λ0(ti j) is the cumulative
hazard function.
It follow that, the marginal likelihood,denoted by LM, of the observed data for all cluster can be
expressed as

LM(β, θ, λ0) =

g∏
i=1

∫
LA

i (βi, θ, λ0, bi)dbi (3)

where
LA

i (βi, θ, λ0, bi) = f (bi)elCi (βi,λ0,bi) (4)

The last function (??) can be regarded as the likelihood of the "augmented" data for cluster i,
treating bi as additional observations. Accordingly, the augmented likelihood, denoted by LA for
all clusters is

LA(β, θ, λ0, b) =

g∏
i=1

LA
i (βi, θ, λ0, bi) (5)

3 Estimation methods

3.1 Expectation Maximization algorithm (EM)

From a statistical point of view, frailties are usually viewed as an unobserved covariate. This has
led to the application of the EM algorithm as a convenient estimation tool. As suggested by Gill
(1985), Klein et al. (1992) and Nielsen et al. (1992) introduced a semi parametric inference for such
frailty model by applying an EM algorithm to the Cox’s partial likelihood function.
It consists of two major steps. In the first step and at each iteration, the expectation of the
log-likelihood of the augmented-data (??), denoted by Q(β, θ, λ0), given the observed data and
given the currents estimates values from previous iteration Ψ̃(β̃, θ̃, λ̃0) of the parameters Ψ(β, θ, λ0)
respectively, is calculated (E − step).

Q(β, θ, λ0) = Q1(β, λ0) + Q2(θ) (6)

where

Q1(β, λ0) =

g∑
i=1

ni∑
j=1

[
δi j

(
logλ0(ti j) + xt

i jβi + zt
i jE(bi)

)
−Λ0(ti j)exp

(
xt

i jβi + logE(ezt
i jbi )

)]
(7)

and

Q2(θ) =

g∑
i=1

[
log f (bi)

]
(8)

with E(.) denoting conditional expected values given the observed values of Ti j and δi j. Then,
maximizing the complete likelihood function Q1 + Q2 to provide the next parameter values β̃, θ̃ as
the non-observable frailties were observed (M − step).
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The algorithm iterates between the two steps until convergence is attained, Dempster and
al.(1977).
However, this approach has some limitations. The EM algorithm has a slower convergence rate
than the the Newton-Rapdson method. Thus, it is the most time consuming procedure. Further-
more, getting variance estimates for frailty parameter and regression coefficients require additional
computation. Finally, the E-step in (??) requires an integral of the same dimension as in the ob-
served data likelihood (Eq (0)). To remedy for integration problems, several solutions based on
frequentest approach have been suggested in the literature, including penalized likelihood meth-
ods based on the Laplace approximation to the integral, REML and simulation based Monte Carlo
EM.

3.2 Restricted maximum likelihood (REML)

McGilchrist and Aisbett (1991) and McGilchrist (1993) used the penalized likelihood approach to
estimate the fixed effects and the residual maximum likelihood (REML) to estimate the variance
components of a Gaussian random effects. In the first step, their methods consists of finding the
best linear unbiased predictors (BLUP) of the fixed and random components by maximizing the
sum of two components lr + l f . Assume that θ is a fixed random effect, the partial log-likelihood
of the failure time, lr is

lr =

g∑
i=1

ni∑
j=1

δi j

xt
i jβi + zt

i jbi − log
∑
tkl≥ti j

exp
(
xt

klβk + zt
klbk

) (9)

and

l f = −
1
2

d∑
g=0

g log 2πθg +

g∑
i=1

b2
i g
θg

 (10)

Then, in the second step, using these results to find both maximum likelihood (ML) and Residual
maximum likelihood (REML) estimators. As described in McGilchrist (1993), the ML and REML
estimators of β are the same as the BLUP estimator for any given estimate of θ. But the estimators
for θ are different.

3.3 Approximate Marginal Likelihood approach

Ripatti and Palmgren (2000) used the derivation of a penalized likelihood solution obtained by
Breslow and Clayton (1993) and proposed a parallel approximation for a lognormal frailty model.
Their method consists of approximating inference based on the Laplace approximation of the
marginal likelihood in (??). Assuming that the random effects are normally distributed with
variance covariance matrix D(θ), they showed that, given the marginal likelihood

LM(β, λ0, b) = c|D(θ)|−
g
2

∫
e−k(b)db (11)

where

k(b) = lC(β, λ0, b) −
1
2

btD(θ)−1b (12)
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with lC(β, λ0, b) given by (??) and (??). Using the Laplace theorem, Ripatti and Palmgren (2000)
showed that the logarithm of (??) can be approximated by

lM(β, θ, λ0) ≈ −
g
2
|log D(θ)| −

1
2

log|k
′′

(̃b)| − k(̃b) (13)

where k′ and k′′ denote, respectively, the g-vector and g
∏

g matrix of first and second order partial
derivatives of k with respect to b, and b̃ = b̃(β, θ) is the solution to k′ (̃b) = 0. They further showed
that, for fixed θ, the values β̂(θ) and b̂(θ), which maximize the penalized log likelihood (??) also
maximize the penalized partial log likelihood

g∑
i=1

ni∑
j=1

δi j

xt
i jβi + zt

i jbi − log
∑
tkl≥ti j

exp
(
xt

klβk + zt
klbk

) − btD(θ)−1b (14)

After calculating the β̂(θ) and b̂(θ) by maximising (??), θ can be apdated by maximizing the
approximate profile likelihood as described in Cortinas et al. (2007)
.

3.4 Monte Carlo EM method (MCEM)

The MCEM algorithm is basically an EM algorithm where a Monte Carlo integration is required to
calculate an expected value.
Klein et al. (1992) and Nielsen et al. (1992)applicate their EM algorithm only to a gamma frailty
distribution. Unlike their case of gamma frailties, assuming normally distributed random effect,
the computation of the conditional expectation in (??) and (??) is not trivial. The expectations of bi

and exp(w′

ibi) are of the type E
[

f (bi)
]

=
∫

f (bi).p(bi\yi) dbi and then, are not available in closed form.

Thus, Vaida and Xu (2000)based the calculation of these integrals by an EM algorithm using
Markov Chain Monte Carlo at the E step with the aim of obtaining the maximum likelihood so-
lution rather than an approximation of it, Ripatti and Palmgren (2000). After, Donohue and Xu
(2013) implemented their method with the phmm package available for R software.

4 Simulation study

In order to investigate in more details the particular situations where this shared frailty model
becomes applicable and preferable to conventional Cox model and then to provide a practical
guidelines for actuaries on the performance of the β estimates from different estimation methods
and from various characteristics of their database, a simulation study is conducted using a setting
similar to a real data set structure for insurance and pension sectors.

4.1 Generation survival times

As Cox and frailty models are formulated from the hazard function, appropriate survival times
are not straightforward simulated. The effects of the regression coefficients have to be translated
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from the hazards to the survival times, because the usual software packages for frailty models
require the individual survival time date, not the hazard function. Bender (2005) derived a general
formula relating between the hazard and the corresponding survival time of the usual Cox model,
we follow their methods and we give the expression for a frailty model

T = H−1
0

[
−log(U)

wi j exp(βt
ixi j)

]
(15)

where U is a random variable with U ∼ Uni[0, 1], H−1
0 is the inverse of a cumulative baseline hazard

function.In this paper, we assume that the baseline hazard H0 can take Exponential, Weibull and
Gompertz distribution. This can be explained by the fact that among the known parametric
distributions, only these three cited distributions have the property of proportional hazards.

Table 1: Simulating survival times with the Exponential, Weibull and Gompertz baseline hasard.
Characteristic Exponential distribution Weibull distribution Gompertz distribution

Parameter Scale parameter λ > 0 Scale parameter λ > 0 Scale parameter λ > 0
Shape parameter ν > 0 Shape parameter −∞ < α < ∞

Hazard function h0(t) = λ h0(t) = λνtν−1 h0(t) = λexp(αt)

Survival times T =
−log(u)

Wi jλexp(βtxi j)
T =

(
−log(u)

Wi jλexp(βtxi j)

)1/ν

T =
1
α

log
(
1 −

αlog(u)
Wi jλexp(βtxi j)

)

4.2 Data simulation

The aim throughout the simulation study is to investigate in more detail the link between fixed fac-
tors estimates and some parameters combinations such as percent censoring, group size, number
of groups, magnitude of the variance parameters associated with the distribution of the random
effects etc. Moreover, we allow to compare the performance of different various inference proce-
dures for shared frailty model in these different considered situations.

We simulate a dataset with an example of three covariates, X1 from a Binomial B[n, p = 0.5],
X2 from a Normal N[0, 1] and X3 from a Normal distribution U[0, 2] with arbitrary parameter
setting fixed throughout the entire study. The corresponding true regression coefficients are fixed
as B1 = 1, B2 = −1 and B3 = 0.3 respectively.

To investigate the importance of censoring, we used fixed and random censoring. First, we
consider 4 fixed censoring rates : 0%, 30%, 60% and 90%. Second, we choose a random censure
following a uniform distribution on the interval from 0 to 9 and then from 0 to 11 to create about
30% and 60% censoring respectively.

Also, we aim to study the effects of increasing the cluster size and the number of clusters dis-
tinctly on the parameter estimates. For each parameter combination, all simulated data contain the
same number of observations (n = 1200) and was replicated 1000 times (x = 1000). Two simulation
settings were considered to groupe data sets (20 clusters of 60 observations or 60 clusters of 20
observations), to analyze the effect of cluster size on the estimation performance. Referring to the
literature, these amounts are optimal in terms of efficiency.

To generate appropriate survival times for simulation studies, the Exponential, the Weibull and
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the Gompertz distributions are used as baseline hazard distributions where parameters are fixed
according to the values resulting from the adjustment of a real insurance survival set. These sur-
vival times are generated under 2 main assumptions. In a first step, classical Cox model (without
frailty or random effects, θ = 0)is used to simulate the data. In a second step, data is generated
from various shared frailty models. Different choices of frailty density function are possible. The
most common are the one-parameter gamma and log-normal distributions. Therefore, we restrict
our comparison to the shared gamma frailty model and the shared log-normal frailty model, re-
spectively. These two frailty models are exhaustively discussed by Therneau and Grambsch (2000),
Hougaard (2000) and Wienke (2010).

(a) Shared Gamma frailty model
For identifiability reasons, we restrict the expectation of the frailty term equal to one, E(Wi) = 1
and the variance to be finite V(Wi) = σ2.Therefore, we consider one-parameter gamma distribution
Γ(1/σ2, 1/σ2) with k = λ. It follows that, to generate data with a true values of variance σ2 = 0.1, 0.5
and 1, we must consider these gamma distributions Γ(10, 10), Γ(2, 2), Γ(1, 1) respectively.

(b) Shared log-normal frailty model
Here, we suppose that the random effects bi are normally distributed, bi ∼ N(0, s2). So therefore,
the frailty is given by Wi = ebi . In this case, the expectation and the variance of the frailty W are
function of the parameter s2, E(W) = e

s2
2 and V(W) = e

s2
2 (e

s2
2 − 1). As precedent distribution, we

generate data with equivalent true values of variance, so we consider N(0, 0.1),N(0, 0.5) and N(0, 1)
respectively.

It is important to note the difference between σ2 and s2. The first one denotes the variance of the
frailty Z in the gamma frailty model, whereas the second one denotes the variance of the random
effect b = lnW in the log-normal model.

−Fit1: Conventional Cox Proportional Hazards Model
−Fit2: Cox Proportional Hazards Model including fixed cluster effect (method EM equivalent to
PPL)
−Fit3: Cox Proportional Hazards Model with gamma shared frailty (method EM )
−Fit4: Cox Proportional Hazards Model with Gaussian shared frailty (method REML)
−Fit5: Cox Proportional Hazards Model with Gaussian shared frailty (method PPL)
−Fit6: Cox Proportional Hazards Model with Gaussian shared frailty (method MCEM)

For each fit, we calculate the average of the parameter estimates, their median, their lower and their
upper quartiles and the corresponding average of their standard errors across the 1200 generated
data sets. We also calculate the Wald and Score Test verifying the significance of each parame-
ter. We use 95% coverage probability (CP) to specify how often the true parameter was covered
by the 95% confidence interval based on the normal approximation. Furthermore, we compute
the corresponding bias and mean absolute error (MAE) with, Bias = β̂i − β, i = 1, 2, . . . , 1200 and

MAE =
|β̂i−β|

x , x = 1000. To illustrate these results, boxplots are provided.
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4.3 Numerical implementation

A variety of recent estimation procedures becomes available in R statistical software.
The coxph () function from the survival package (Therneau 2014b) treats the semi-parametric
model with gamma and lognormal frailties and allow analyses based on EM and approximate
marginal likelihood estimates procedures . The coxme (Therneau 2014a) and the phmm packages
(Donohue and Xu 2012) perform only semi parametric estimation in the log-normal frailties and
implement the REML and the MCEM estimates approaches respectively. To increase the precision
of the estimation procedure to an acceptable size, we adapt the convergence criteria (eps) and the
maximum iteration number for each pakage as recommend Hirsch and al. (2012). In each repli-
cation, to obtain convergence, every estimation procedure requires different computer times to
analyse a simulated sample size counting 1200 individuals. coxph and coxme take several minutes
to run while phmm needs few hours to analyse one data set. This time can be extented or reduced
by increasing or decreasing the size of dataset respectively.

4.4 Results of the simulations

In this simulation study, none of the methods showed convergence problems. While a variety of
distributions for the baseline hazard have been explored in this simulation study, due to space
limitations here, we present only the Weibull, which seems to represent a good tradeoff between
simplicity and flexibility. In addition, all used approaches are semi-parametric estimation models
that consider the baseline hazard as unknown. Then, generating the survival with exponential,
Weibull or Gompertz baseline hazards don’t considerably affect the estimation of fixed or random
effect parameters.

In a first step, generated data without frailty/random effects (classical Cox models ) was inves-
tigated to examine how the estimation approaches act in such condition. As the frailty variance
is considered equal to zero, this data does not represent any clustering effects. In this case, the
figure 1 shows clearly that the estimation procedures implementing clustering show no differences
with those of the classical Cox model. Besides, for each beta estimate and for the six models, left
Boxplots display the least Bias. So censoring level has a major effect on the estimation results than
the cluter size.

In a second step, generated data from two shared frailty models was analyzed. The estimation
results are presented according to the following four subsections.

a. Fixed-effects parameter estimates under Shared gamma frailty model
At the current setting, frailties are generated by gamma distribution. For the same levels of hetero-
geneity and censoring, all approaches (fit3, fit4, fit5 and fit6) produce on average similar estimates
of the fixed parameter β. More difference is seen in the estimation with classical Cox model, fig.2.

Tables 2 and 4 (in the annex) highlight the effect of censoring and heterogeneity levels on the
bias and the MAE of fixed-effects parameters respectively. It is shown that for a comparable setting,
the bias increases greatly under very heavy and heavy censoring level (90% and 60% respectively).
In the presence of moderate censored data (30%), the bias decreases slightly and continue further
in the case without censoring. In addition, these two tables display the effect of heterogeneity
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Figure 1: Fixed-effects parameter estimates in data generated by the Cox model (θ = 0) and
analyzed by the six fit models; cluster numbers of (a)20 and (b)60; left column 30% right column
90% censoring; true values are horizontal lines.
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Figure 2: Fixed-effects parameter estimates in data generated by: the shared Gamma frailty model
with θ = 0.5(left column) and the shared log-normal frailty model with θ = 0.5 (right column);
cluster numbers of (a)20 and (b)60; 30% censoring level; true values are horizontal lines.
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Figure 3: Fixed-effects parameter estimates in data generated by the shared log-normal frailty
model with θ = 0.1(1st line), θ = 0.5(2nd line) and θ = 1(3rd line); cluster numbers of (a)20 and
(b)60; left column 30% right column 90% censoring; true values are horizontal lines.
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parameter (variance of frailty) on the bias of fixed effects. It exhibits that for θ = 0 (generating data
without frailty effects), Cox’s model provides better results in terms of bias and MAE than the es-
timates of any frailty approaches. When θ = 0.1, the parameters of the fixed effect terms estimated
by both Cox’s and frailty modeling approaches are very small compared to the cases of θ = 0.5.
The right column of Fig 3 shows clearly the effect on the bias of various level of heterogeneity in
gamma frailty survival data. referring on, for further increase in heterogeneity effects, it is obvious
that the bias in the estimates obtained from Cox’s model increases. Nonetheless, those from the
frailty model decrease and converge towards true parameter.

On the other hand, one can remark that in the absence of heterogeneity and under heavy and
very heavy censoring settings, the estimates of Cox model exhibit less bias and MAE than the
shared frailty models.

b. Fixed-effects parameter estimates under shared log-normal frailty model
The distinctive feature here is that the frailties are assumed to be generated by log-normal distri-
butions (the random effects are Gaussian distributed).

Keeping the same parameter setting as the precedent distribution, the six estimation approaches
have shown similar results. In general, like the gamma frailty case, the bias increases with increas-
ing the censoring rates or the variances of random effects θ, tables 5 and 6.

We conclude that the empirical variability of the parameter estimates, by means of EM, REML,
PPL or MCEM methods, was in general similar for both gamma and lognormal frailty generated
survaival data. Then, a misspecification of the distribution of the frailties has no significant impact
on the estimates of . Even REML and MCEM approaches, proposed respectively by McGilchrist
(1991) and Vaida et Xu (2000) to estimate Gaussian frailties, have shown good adjustment for the
Gamma frailtty model. Conversely, Nielsen (1992) model which is specific to estimate Gamma
farailty displayed good estimation results with Gaussian frailty. This finding coincides with the
results obtained by Hirsch (2012). The detailed results of this simulation study are presented in
table 4.

c. Random-effect parameter estimates
In some cases, the intention of the statistician or actuary is to obtain precise estimate of the het-
erogeneity parameter. For this reason, it is necessary in the present study to tell the difference
that exists between the estimation of the frailty or random effects variance in the conventional Cox
model (variance equal to zero) and in the shared frailty models (variance equal to 0,1; 0,5 and 1).
The first model treats the data as it belongs to one group and then when the number of clusters
increases, the variability of the variance rises too. The opposite effect is found in the second model
where the variability of the variance estimates decreases considerably with increasing number of
clusters.
The four shared frailty approaches produced on average similar estimates of the variance of
Frailty/random effects at a comparable setting. Nevertheless, the variance estimates for the method
of Ripatti and Palmgren (2000) showed smaller bias. More dissimilarity was seen between the sam-
ples composition (a) and (b).

d. Effect of size and sample composition
For moderate sample size (n = 100), the bias in the parameter estimates seemed to build up (not
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shown). By increasing the data size (n = 1200), the bias in the fixed effect parameters, for all esti-
mates approaches, seemed to decrease for the two samples composition (20 clusters of 60 members,
60 cluster of 20 members).

By altering the sample size composition without changing the total number n, the estimation
results of each of the six frailty models are slightly different. The three previous tables give an
overview of this difference. Then, we can conclude that there is a small significant effect of changing
the sample size composition as long as the multiple of number group (g) and number of member
(m) remains constant.
One can notice that, for all approaches, the bias in the fixed effects parameter estimates seemed
to reduce with the increasing cluster size and decreasing the number of clusters. The situation is
opposite in the random effect parameter estimates where the bias increase with reducing cluster
number.

5 Discussion and Conclusions

Implementation of frailty models for the evaluation of lifetimes and then pension liabilities should
be properly considered in actuarial mathematics and in insurance/pensions practice. In this paper,
we compared frailty approaches in terms of the point estimates of the fixed effect regression
coefficients. Through a simulation studies, many replications are carried with varied combinations
and for each one, paramters are estimated via four commonly used estimation methods in the
shared frailty models, all accessible in standard statistical software, for estimating fixed and random
effects. These methods are from Nielsen et al. (1992), McGilchrist (1993) and Ripatti and Palmgren
(2000) with the classical approach of not incorporating the frailty, that is, the approach of Cox (1972).
The main reason for this choice was software availability and especially similarity between these
frequentist estimation approaches as our purpose here isn’t to test the performance of different
estimation methods but to investigate the impact of taking into account a random effects in the
Cox model.

It has been shown that, when survival data includes a some level of heterogeneity whatever its
distribution, the frailty model approach to estimate β coefficients performs better than the standard
Cox’s proportional hazard model. In the current research, Cox approach has lost its usefulness
when heterogeneity parameter increases more than 0.1. Conversely, the Cox model is still better
than any frailty models when the heterogeneity parameter is close to zero.

Moreover, after evaluating the results obtained from the gamma frailty and Gaussian random
effect, the fitted models (fit3, fit4, fit5, fit6) provide very similar values for the estimates of β even
though the estimates of theta are slightly biased. On the one hand, we can say that each estimation
approach has its own superiority as well as its very own drawbacks and then no unique approach
is found as the superlative one. On the other hand, this is evident that the knowledge of the
distribution of the frailty is not necessary as long as the sample size is reasonably well and the
censoring level isn’t heavy.

Another factor highly responsible for the increase of bias is the censoring rates of the data. This
bias was, in almost all combinations, slightly higher as the amount of censoring increased in the
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data. However, it can be noted that, in general, the frailty model behaved better in moderate or
heavy censoring setting and was more flexible than the Cox model.

We also test whether there is any significant change if we model the composition of the sample
size. We showed that the different allocations for sample affect slightly the estimation results. Then,
we have to cofirm that for all models, the bias for the fixed-effect estimates seems to disappear with
the increases in cluster size and for the random-effect estimates with the increasing of the number
of clusters.

6 Annex

The four tables showed respectively the Bias and the MAE on the estimates results for a gamma
shared frailty data.
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Table 2: Simulation results: average value of bias over 1000 replications in data generated without
and with shared Gamma frailty effect (θ = 0, 0.1 and 0.5); cluster numbers of (a)20 and (b)60 with
different censoring levels.

Parameter
Without censoring setting Moderate censoring setting (30%) Heavy censoring setting (90%)
β1 β2 β3 β1 β2 β3 β1 β2 β3

θ
=

0

Cluster size = 1200, 20 clusters
Fit 1 -1,16E-03 -1,51E-03 2,45E-04 -4,33E-03 -9,93E-04 3,56E-04 3,07E-04 2,20E-03 -1,27E-03

Fit 2 2,84E-04 -2,10E-03 4,31E-04 -2,79E-03 -1,67E-03 5,29E-04 3,55E-03 -3,27E-04 -6,35E-05

Fit 3 4,88E-05 -2,56E-03 5,36E-04 -2,86E-03 -2,22E-03 6,86E-04 1,39E-03 6,49E-04 -5,35E-04

Fit 4 7,78E-04 -3,27E-03 7,37E-04 -2,28E-03 -2,74E-03 8,50E-04 1,55E-03 6,57E-05 -3,33E-04

Fit 5 4,59E-04 -2,92E-03 6,31E-04 -2,54E-03 -2,48E-03 7,74E-04 1,38E-03 2,22E-04 -3,73E-04

Fit 6 4,05E-04 -2,92E-03 6,38E-04 -2,53E-03 -2,49E-03 7,87E-04 2,00E-03 -8,14E-05 -3,13E-04

Cluster size = 1200, 60 clusters
Fit 1 2,57E-03 -3,74E-03 -3,92E-04 2,16E-03 -4,48E-03 -2,64E-04 1,68E-02 -8,18E-03 9,33E-05

Fit 2 2,81E-03 -4,38E-03 -2,13E-04 3,09E-03 -5,13E-03 -3,42E-04 1,62E-02 -1,03E-02 8,51E-04

Fit 3 3,96E-03 -5,14E-03 2,50E-05 3,97E-03 -6,14E-03 2,73E-04 1,88E-02 -1,15E-02 1,17E-03

Fit 4 5,51E-03 -6,64E-03 4,99E-04 5,42E-03 -7,38E-03 6,52E-04 1,91E-02 -1,25E-02 1,44E-03

Fit 5 4,95E-03 -6,11E-03 3,36E-04 4,88E-03 -6,89E-03 5,00E-04 1,89E-02 -1,22E-02 1,35E-03

Fit 6 5,92E-03 -7,05E-03 6,20E-04 6,08E-03 -7,96E-03 8,37E-04 2,09E-02 -1,42E-02 2,09E-03

θ
=

0,
1

Cluster size = 1200, 20 clusters
Fit 1 -4,90E-02 5,16E-02 -1,56E-02 -4,03E-02 3,96E-02 -1,23E-02 2,76E-03 5,51E-03 -1,16E-03

Fit 2 -5,14E-02 4,92E-02 -1,50E-02 -4,21E-02 3,79E-02 -1,19E-02 1,16E-02 5,75E-04 8,75E-04

Fit 3 6,62E-03 -5,23E-03 5,17E-04 3,01E-03 -3,66E-03 3,26E-04 1,24E-02 -7,72E-03 2,82E-03

Fit 4 3,70E-03 -2,35E-03 -3,03E-04 1,69E-03 -2,37E-03 -4,41E-05 1,16E-02 -8,55E-03 3,04E-03

Fit 5 4,13E-03 -2,78E-03 -1,81E-04 2,11E-03 -2,80E-03 8,13E-05 1,17E-02 -8,81E-03 3,11E-03

Fit 6 3,49E-03 -2,17E-03 -3,56E-04 1,72E-03 -2,21E-03 -8,21E-05 1,37E-02 -8,75E-03 3,17E-03

Cluster size = 1200, 60 clusters
Fit 1 -5,55E-02 5,49E-02 -1,63E-02 2,16E-03 -4,48E-03 -2,64E-04 3,41E-03 1,50E-02 -7,80E-03

Fit 2 -5,35E-03 5,38E-02 -1,20E-02 3,09E-03 -5,13E-03 -3,42E-05 1,22E-02 1,08E-02 -5,97E-03

Fit 3 1,03E-03 -8,37E-04 -4,59E-04 3,97E-03 -6,14E-03 2,73E-04 1,27E-02 1,12E-03 -3,81E-03

Fit 4 2,62E-03 -2,23E-03 -2,14E-05 5,42E-03 -7,38E-03 6,52E-04 1,10E-02 5,90E-04 -3,76E-03

Fit 5 2,21E-03 -1,84E-03 -1,34E-04 4,88E-03 -6,89E-03 5,00E-04 1,08E-02 7,94E-04 -3,82E-03

Fit 6 2,13E-03 -1,74E-03 -1,68E-04 6,08E-03 -7,96E-03 8,37E-04 1,45E-02 -1,26E-03 -3,08E-03

θ
=

0,
5

Cluster size = 1200, 20 clusters
Fit 1 -1,70E-01 1,60E-01 -4,77E-02 -1,67E-01 1,54E-01 -4,58E-02 -7,34E-02 8,54E-02 -2,98E-02

Fit 2 -1,60E-01 1,56E-01 -4,65E-02 -1,55E-01 1,49E-01 -4,43E-02 -5,02E-02 7,36E-02 -2,35E-02

Fit 3 2,05E-03 -4,09E-03 8,38E-04 1,52E-04 -3,56E-03 8,64E-04 -4,40E-03 7,91E-03 -3,89E-03

Fit 4 -1,19E-03 -1,22E-03 1,13E-06 -2,70E-03 -1,10E-03 1,43E-04 -4,23E-03 5,14E-03 -3,12E-03

Fit 5 -6,90E-04 -1,67E-03 1,35E-04 -2,07E-03 -1,67E-03 3,15E-04 -2,41E-03 3,32E-03 -2,48E-03

Fit 6 -1,19E-03 -1,17E-03 -4,63E-06 -2,74E-03 -1,05E-03 1,25E-04 1,59E-03 3,20E-03 -2,37E-03

Cluster size = 1200, 60 clusters
Fit 1 -1,65E-01 1,65E-01 -5,06E-02 -1,62E-01 1,58E-01 -4,85E-02 -6,76E-02 8,53E-02 -2,88E-02

Fit 2 -1,68E-01 1,63E-01 -5,02E-02 -1,63E-01 1,57E-01 -4,82E-02 -6,91E-02 8,24E-02 -2,76E-02

Fit 3 1,67E-03 -4,06E-04 -9,03E-02 -7,72E-04 2,07E-03 -1,29E-03 -8,22E-03 9,58E-03 -4,32E-03

Fit 4 5,11E-03 -3,94E-03 1,47E-04 3,96E-03 -3,08E-03 2,10E-04 -1,02E-02 6,00E-03 -4,18E-03

Fit 5 4,90E-03 -3,73E-03 8,45E-05 4,06E-03 -3,18E-03 2,40E-04 -6,72E-03 2,40E-03 -3,03E-03

Fit 6 4,90E-03 -3,80E-03 1,04E-04 4,26E-03 -3,21E-03 2,31E-04 6,32E-03 -1,99E-03 -1,34E-03
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Table 3: Simulation results: average value of bias over 1000 replications in data generated with
shared log-normal frailty effect (θ = 0, 1; 0.5 and 1); cluster numbers of (a)20 and (b)60 with different
censoring levels.

Parameter
Without censoring setting Moderate censoring setting (30%) Heavy censoring setting (90%)
β1 β2 β3 β1 β2 β3 β1 β2 β3

θ
=

0,
1

Cluster size = 1200, 20 clusters
Fit 1 -5,31E-02 5,69E-02 -1,64E-02 -4,24E-02 4,11E-02 -1,13E-02 -1,22E-03 3,80E-03 1,29E-05

Fit 2 -5,57E-02 5,40E-02 -1,56E-03 -4,26E-02 3,88E-02 -1,08E-02 -4,98E-03 2,07E-03 7,02E-04

Fit 3 7,04E-03 -5,15E+00 2,12E-03 3,79E-03 -3,49E-03 2,20E-03 3,42E-03 -6,76E-03 3,66E-03

Fit 4 3,29E-03 -1,48E-03 1,03E-03 1,91E-03 -1,84E-03 1,71E-03 1,61E-03 -7,15E-03 3,69E-03

Fit 5 3,71E-03 -1,92E-03 1,16E-03 2,34E-03 -2,28E-03 1,84E-03 1,46E-03 -7,30E-03 3,75E-03

Fit 6 3,11E-03 -1,30E-03 9,76E-04 1,83E-03 -1,68E-03 1,66E-03 3,66E-03 -7,22E-03 3,79E-03

Cluster size = 1200, 60 clusters
Fit 1 -5,72E-02 6,01E-02 -1,87E-02 -4,27E-02 4,49E-02 -1,44E-02 1,84E-02 7,45E-03 -4,88E-03

Fit 2 -5,91E-02 5,88E-02 -1,84E-02 -4,18E-02 4,38E-02 -1,41E-02 2,44E-02 3,92E-03 -3,22E-03

Fit 3 4,70E-03 -1,21E-03 -5,58E-04 5,04E-03 -7,16E-04 -2,49E-04 2,57E-02 -3,25E-03 -1,21E-03

Fit 4 4,94E-03 -1,65E-03 -4,22E-04 4,67E-03 -9,49E-04 -1,98E-04 2,45E-02 -3,92E-03 -1,09E-03

Fit 5 4,55E-03 -1,27E-03 -5,34E-04 4,45E-03 -7,50E-04 -2,59E-04 2,43E-02 -3,67E-03 -1,18E-03

Fit 6 4,49E-03 -1,18E-03 -5,67E-04 4,98E-03 -8,29E-04 -2,25E-04 2,77E-02 -5,59E-03 -4,96E-04

θ
=

0,
5

Cluster size = 1200, 20 clusters
Fit 1 -2,04E-01 2,08E-01 -6,14E-02 -1,71E-01 1,68E-01 -4,99E-02 -2,10E-02 -1,20E-02 2,30E-01

Fit 2 -2,07E-01 2,01E-01 -5,93E-02 -1,70E-01 1,62E-01 -4,84E-02 -2,83E-02 -1,09E-02 2,01E-01

Fit 3 7,74E-03 -6,18E-03 2,51E-03 6,39E-03 -5,82E-03 2,59E-03 7,38E-03 5,73E-03 1,97E-01

Fit 4 2,67E-03 -1,18E-03 1,04E-03 2,01E-03 -1,59E-03 1,33E-03 2,30E-03 5,30E-03 1,97E-01

Fit 5 3,22E-03 -1,74E-03 1,21E-03 2,67E-03 -2,25E-03 1,52E-03 3,22E-03 5,83E-03 1,97E-01

Fit 6 2,69E-03 -1,17E-03 1,04E-03 2,02E-03 -1,60E-03 1,34E-03 7,81E-03 6,00E-03 1,98E-01

Cluster size = 1200, 60 clusters
Fit 1 -2,17E-01 2,19E-01 -6,57E-02 -1,76E-01 1,76E-01 -5,41E-02 -1,83E-02 5,39E-02 -1,92E-02

Fit 2 -2,22E-02 2,16E-01 -6,50E-02 -1,73E-01 1,74E-01 -5,36E-02 -9,94E-03 4,92E-02 -1,72E-02

Fit 3 9,31E-03 -6,04E-03 7,64E-04 6,92E-03 -1,10E-03 -1,77E-04 2,04E-02 -6,13E-04 -6,35E-04

Fit 4 4,22E-03 -1,29E-03 -5,68E-04 5,25E-03 -2,64E-05 -5,21E-04 1,03E-02 3,37E-03 -2,43E-03

Fit 5 4,06E-03 -1,13E-03 -6,15E-04 5,68E-03 -4,42E-04 -3,96E-04 1,17E-02 1,40E-03 -1,78E-03

Fit 6 4,07E-03 -1,16E-03 -5,97E-04 6,05E-03 -4,17E-04 -4,01E-04 2,32E-02 -2,64E-03 -2,35E-04

θ
=

1

Cluster size = 1200, 20 clusters
Fit 1 -3,11E-01 3,16E-01 -9,36E-02 -2,74E-01 2,70E-01 -8,04E-02 -4,65E-02 9,61E-02 -2,65E-02

Fit 2 -3,14E-01 3,06E-01 -9,09E-02 -2,72E-01 2,62E-01 -7,84E-02 5,58E-02 8,93E-02 -2,42E-02

Fit 3 4,30E-03 -2,98E-03 1,54E-03 1,69E-03 -3,18E-03 1,72E-03 1,07E-02 -4,25E-03 6,13E-03

Fit 4 2,26E-03 -1,12E-03 1,01E-03 3,92E-04 -2,05E-03 1,39E-03 6,65E-03 -4,14E-03 5,94E-03

Fit 5 2,90E-03 -1,75E-03 1,20E-03 1,18E-03 -2,83E-03 1,62E-03 8,45E-03 -6,81E-03 6,83E-03

Fit 6 2,32E-03 -1,12E-03 1,01E-03 4,65E-04 -2,10E-03 1,41E-03 1,27E-02 -6,61E-03 6,90E-03

Cluster size = 1200, 60 clusters
Fit 1 -3,31E-01 3,31E-03 -9,93E-02 -2,80E-01 2,79E-01 -8,54E-02 -6,14E-02 1,03E-01 -3,65E-02

Fit 2 -3,36E-01 3,28E-03 -9,84E-02 -2,78E-01 2,77E-01 -8,47E-02 -5,22E-02 9,75E-02 -3,42E-02

Fit 3 5,53E-03 -2,42E-03 -3,91E-04 3,34E-03 1,46E-03 -1,24E-03 1,40E-02 9,94E-04 -2,65E-03

Fit 4 3,71E-03 -1,05E-03 -6,74E-04 4,27E-03 3,40E-05 -8,05E-04 1,73E-03 6,12E-03 -4,97E-03

Fit 5 3,54E-03 -8,78E-04 -7,23E-04 4,99E-03 -6,69E-04 -5,95E-04 6,85E-03 5,33E-04 -3,12E-03

Fit 6 3,67E-03 -9,42E-04 -7,01E-04 5,12E-03 -5,17E-04 -6,35E-04 2,11E-02 -3,96E-03 -1,30E-03
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Table 4: Simulation results: average value of MAE over 1000 replications in data generated without
and with shared Gamma frailty effect (θ = 0; 0.1 and 0.5); cluster numbers of (a)20 and (b)60 with
different censoring levels.

Parameter
Without censoring setting Moderate censoring setting (30%) Heavy censoring setting (90%)
β1 β2 β3 β1 β2 β3 β1 β2 β3

θ
=

0

Cluster size = 1200, 20 clusters
Fit 1 4,94E-02 3,82E-02 1,95E-02 5,94E-02 4,31E-02 2,25E-02 1,81E-01 9,82E-02 5,24E-02

Fit 2 5,89E-02 3,83E-02 1,95E-02 6,96E-02 4,32E-02 2,26E-02 2,06E-01 1,02E-01 5,42E-02

Fit 3 4,96E-02 3,83E-02 1,95E-02 5,98E-02 4,33E-02 2,25E-02 1,82E-01 9,87E-02 5,27E-02

Fit 4 4,97E-02 3,84E-02 1,95E-02 5,99E-02 4,33E-02 2,25E-02 1,82E-01 9,89E-02 5,27E-02

Fit 5 4,96E-02 3,83E-02 1,95E-02 5,99E-02 4,33E-02 2,25E-02 1,82E-01 9,89E-02 5,27E-02

Fit 6 4,96E-02 3,83E-02 1,95E-02 5,98E-02 4,32E-02 2,25E-02 1,82E-01 9,89E-02 5,27E-02

Cluster size = 1200, 60 clusters
Fit 1 5,04E-02 3,77E-02 2,03E-02 6,03E-02 4,32E-02 2,31E-02 1,81E-01 9,87E-02 5,26E-02

Fit 2 5,92E-02 3,77E-02 2,03E-02 6,89E-02 4,36E-02 2,32E-02 2,02E-01 1,04E-01 5,40E-02

Fit 3 5,06E-02 3,79E-02 2,03E-02 6,05E-02 4,35E-02 2,31E-02 1,81E-01 9,99E-02 5,28E-02

Fit 4 5,07E-02 3,81E-02 2,03E-02 6,08E-02 4,37E-02 2,31E-02 1,81E-01 1,00E-01 5,28E-02

Fit 5 5,07E-02 3,81E-02 2,03E-02 6,07E-02 4,37E-02 2,31E-02 1,81E-01 1,00E-01 5,28E-02

Fit 6 5,07E-02 3,81E-02 2,03E-02 6,08E-02 4,38E-02 2,31E-02 1,81E-01 1,01E-01 5,30E-02

θ
=

0,
1

Cluster size = 1200, 20 clusters
Fit 1 8,53E-02 5,86E-02 2,39E-02 8,82E-02 5,35E-02 2,61E-02 1,89E-01 9,82E-02 5,35E-02

Fit 2 7,50E-02 5,68E-02 2,37E-02 7,82E-02 5,26E-02 2,60E-02 1,99E-01 1,01E-01 5,47E-02

Fit 3 5,91E-02 3,81E-02 2,07E-02 6,74E-02 4,24E-02 2,38E-02 1,87E-01 9,96E-02 5,44E-02

Fit 4 5,84E-02 3,77E-02 2,05E-02 6,69E-02 4,22E-02 2,38E-02 1,86E-01 9,97E-02 5,44E-02

Fit 5 5,85E-02 3,77E-02 2,05E-02 6,69E-02 4,22E-02 2,38E-02 1,86E-01 9,98E-02 5,44E-02

Fit 6 5,85E-02 3,77E-02 2,05E-02 6,69E-02 4,21E-02 2,38E-02 1,86E-01 9,96E-02 5,44E-02

Cluster size = 1200, 60 clusters
Fit 1 7,54E-02 6,07E-02 2,49E-02 6,03E-02 4,32E-02 2,31E-02 1,86E-01 1,00E-01 5,46E-02

Fit 2 7,57E-02 5,99E-02 2,47E-02 6,89E-02 4,36E-02 2,32E-02 2,06E-01 1,03E-01 5,55E-02

Fit 3 5,64E-02 3,78E-02 2,10E-02 6,05E-02 4,35E-02 2,31E-02 1,87E-01 1,02E-01 5,51E-02

Fit 4 5,63E-02 3,78E-02 2,10E-02 6,08E-02 4,37E-02 2,31E-02 1,87E-01 1,02E-01 5,50E-02

Fit 5 5,63E-02 3,78E-02 2,09E-02 6,07E-02 4,37E-02 2,31E-02 1,87E-01 1,02E-01 5,50E-02

Fit 6 5,63E-02 3,78E-02 2,09E-02 6,08E-02 4,38E-02 2,314-02 1,87E-01 1,02E-01 5,52E-02

θ
=

0,
5

Cluster size = 1200, 20 clusters
Fit 1 1,81E-01 1,60E-01 4,88E-02 1,83E-01 1,54E-01 4,75E-02 2,57E-01 1,30E-01 6,06E-02

Fit 2 1,62E-01 1,56E-01 4,76E-02 1,59E-01 1,50E-01 4,62E-02 2,13E-01 1,27E-01 6,08E-02

Fit 3 5,94E-02 3,89E-02 1,98E-02 6,56E-02 4,18E-02 2,21E-02 1,94E-01 1,03E-01 5,54E-02

Fit 4 5,88E-02 3,88E-02 1,98E-02 6,50E-02 4,17E-02 2,21E-02 1,91E-01 1,03E-01 5,55E-02

Fit 5 5,88E-02 3,88E-02 1,98E-02 6,51E-02 4,17E-02 2,21E-02 1,91E-01 1,03E-01 5,57E-02

Fit 6 5,87E-02 3,88E-02 1,98E-02 6,51E-02 4,17E-02 2,20E-02 1,92E-01 1,03E-01 5,57E-02

Cluster size = 1200, 60 clusters
Fit 1 1,68E-01 1,65E-01 5,12E-02 1,67E-01 1,58E-01 4,97E-02 2,17E-01 1,24E-01 5,71E-02

Fit 2 1,68E-01 1,63E-01 5,08E-02 1,65E-01 1,57E-01 4,94E-02 2,16E-01 1,26E-01 5,78E-02

Fit 3 6,02E-01 3,93E-02 2,14E-02 6,63E-02 4,32E-02 2,35E-02 2,00E-01 1,06E-01 5,26E-02

Fit 4 5,94E-01 3,93E-02 2,14E-02 6,52E-02 4,33E-02 2,35E-02 1,94E-01 1,05E-01 5,26E-02

Fit 5 5,94E-01 3,93E-02 2,14E-02 6,52E-02 4,34E-02 2,35E-02 1,94E-01 1,05E-01 5,28E-02

Fit 6 5,93E-01 3,93E-02 2,14E-02 6,53E-02 4,33E-02 2,35E-02 1,96E-01 1,06E-01 5,31E-02
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Table 5: Simulation results: average value of MAE over 1000 replications in data generated without
and with shared log-normal frailty effect (θ = 0, 1; 0.5 and 1); cluster numbers of (a)20 and (b)60
with different censoring levels.

Parameter
Without censoring setting Moderate censoring setting (30%) Heavy censoring setting (90%)
β1 β2 β3 β1 β2 β3 β1 β2 β3

θ
=

0,
1

Cluster size = 1200, 20 clusters
Fit 1 9,14E-02 6,47E-02 2,45E-02 9,07E-02 5,85E-02 2,52E-02 1,95E-01 1,00E-01 5,41E-02

Fit 2 7,58E-02 6,25E-02 2,41E-02 7,52E-02 5,73E-02 2,49E-02 2,03E-01 1,01E-01 5,53E-02

Fit 3 5,89E-02 4,00E-02 2,04E-02 6,57E-02 4,54E-02 2,33E-02 1,92E-01 1,01E-01 5,45E-02

Fit 4 5,80E-02 3,97E-02 2,03E-02 6,53E-02 4,51E-02 2,32E-02 1,91E-01 1,01E-01 5,44E-02

Fit 5 5,81E-02 3,97E-02 2,03E-02 6,53E-02 4,52E-02 2,32E-02 1,92E-01 1,01E-01 5,45E-02

Fit 6 5,80E-02 3,97E-02 2,03E-02 6,53E-02 4,51E-02 2,32E-02 1,92E-01 1,01E-01 5,45E-02

Cluster size = 1200, 60 clusters
Fit 1 7,72E-02 6,50E-02 2,61E-02 7,45E-02 5,75E-02 2,66E-02 1,77E-01 9,96E-02 5,52E-02

Fit 2 7,56E-02 6,41E-02 2,60E-02 7,31E-02 5,71E-02 2,66E-02 2,00E-01 1,02E-01 5,67E-02

Fit 3 5,63E-02 3,78E-02 2,14E-02 6,35E-02 4,47E-02 2,43E-02 1,79E-01 1,01E-01 5,52E-02

Fit 4 5,64E-02 3,78E-02 2,14E-02 6,36E-02 4,46E-02 2,44E-02 1,79E-01 1,01E-01 5,53E-02

Fit 5 5,63E-02 3,78E-02 2,14E-02 6,36E-02 4,46E-02 2,44E-02 1,79E-01 1,01E-01 5,53E-02

Fit 6 5,64E-02 3,78E-02 2,14E-02 6,37E-02 4,47E-02 2,44E-02 1,80E-01 1,01E-01 5,54E-02

θ
=

0,
5

Cluster size = 1200, 20 clusters
Fit 1 2,19E-01 2,08E-01 6,17E-02 1,97E-01 1,69E-01 5,16E-02 2,30E-01 1,11E-01 5,72E-02

Fit 2 2,08E-01 2,01E-01 5,97E-02 1,72E-01 1,62E-01 5,03E-02 2,01E-01 1,07E-01 5,65E-02

Fit 3 5,98E-02 4,02E-02 2,04E-02 6,68E-02 4,54E-02 2,34E-02 1,97E-01 1,02E-01 5,51E-02

Fit 4 5,93E-02 3,97E-02 2,03E-02 6,64E-02 4,50E-02 2,32E-02 1,97E-01 1,02E-01 5,49E-02

Fit 5 5,93E-02 3,97E-02 2,03E-02 6,65E-02 4,50E-02 2,33E-02 1,97E-01 1,02E-01 5,51E-02

Fit 6 5,92E-02 3,97E-02 2,03E-02 6,65E-02 4,50E-02 2,32E-02 1,98E-01 1,02E-01 5,51E-02

Cluster size = 1200, 60 clusters
Fit 1 2,19E-01 2,19E-01 6,59E-02 1,80E-01 1,76E-01 5,53E-02 1,90E-01 1,09E-01 5,89E-02

Fit 2 2,22E-01 2,16E-01 6,52E-02 1,75E-01 1,74E-01 5,47E-02 1,99E-01 1,11E-01 5,90E-02

Fit 3 5,95E-02 3,77E-02 2,15E-02 6,80E-02 4,45E-02 2,47E-02 1,90E-01 1,02E-01 5,82E-02

Fit 4 5,89E-02 3,77E-02 ,15E-02 6,76E-02 4,45E-02 2,48E-02 1,89E-01 1,01E-01 5,76E-02

Fit 5 5,89E-02 3,77E-02 2,15E-02 6,76E-02 4,45E-02 2,48E-02 1,89E-01 1,02E-01 5,77E-02

Fit 6 5,90E-02 3,77E-02 2,15E-02 6,77E-02 4,44E-02 2,48E-02 1,91E-01 1,02E-01 5,80E-02

θ
=

1

Cluster size = 1200, 20 clusters
Fit 1 3,19E-01 3,16E-01 9,36E-02 2,90E-01 2,70E-01 8,06E-02 2,78E-01 1,33E-01 6,19E-02

Fit 2 3,14E-01 3,06E-01 9,09E-02 2,72E-01 2,62E-01 7,85E-02 2,06E-01 1,28E-01 6,10E-02

Fit 3 5,97E-02 3,98E-01 2,02E-02 6,70E-02 4,49E-02 2,36E-02 1,98E-01 1,01E-01 5,52E-02

Fit 4 5,96E-02 3,97E-01 2,02E-02 6,70E-02 4,48E-02 2,35E-02 1,97E-01 1,01E-01 5,51E-02

Fit 5 5,97E-02 3,97E-01 2,02E-02 6,70E-02 4,48E-02 2,36E-02 1,97E-01 1,02E-01 5,53E-02

Fit 6 5,96E-02 3,97E-02 2,02E-02 6,70E-02 4,48E-02 2,35E-02 1,97E-01 1,02E-01 5,53E-02

Cluster size = 1200, 60 clusters
Fit 1 3,31E-01 3,31E-01 9,93E-02 2,81E-01 2,79E-01 8,54E-02 2,11E-01 1,35E-01 6,57E-02

Fit 2 3,36E-01 3,28E-01 9,84E-02 2,78E-01 2,77E-01 8,47E-02 2,06E-01 1,35E-01 6,55E-02

Fit 3 5,93E-02 3,79E-02 2,14E-02 6,77E-02 4,35E-02 2,44E-02 1,93E-01 1,04E-01 6,04E-02

Fit 4 5,93E-02 3,77E-02 2,14E-02 6,77E-02 4,35E-02 2,45E-02 1,91E-01 1,04E-01 5,97E-02

Fit 5 5,92E-02 3,77E-02 2,14E-02 6,78E-02 4,36E-02 2,45E-02 1,92E-01 1,04E-01 6,00E-02

Fit 6 5,93E-02 3,77E-02 2,14E-02 6,79E-02 4,36E-02 2,45E-02 1,94E-01 1,05E-01 6,03E-02
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