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Abstract

In a continuous time life cycle model of consumption with an uncertain life-
time, we use a non-parametric specification of rank-dependent utility theory to
characterize the preferences of the agent. We prove that time consistency holds
for a subclass of probability-weighting function, providing the foundation for a
constant rate of time preference that interacts multiplicatively with the hazard
rate instead of additively as in Yaari (1965) seminal model. We calibrate both
models to explain the hump in the life-cycle consumption, and show that the
multiplicative model is more robust.
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A long tradition exists in economics that distinguishes two types of primitive to
explain discounting. First, discounting is explained using purely psychological factors,
such as impatience, captured by the discount function. If the discount function is
exponential, as in the seminal model proposed by Samuelson (1937), then the time
preference is characterized by a "pure rate of time preference" (i.e. the log derivative
of the discount function) that is invariant with time and the level of consumption.
Even if some authors considered early on the possibility for the discount factor to
be "non-exponential" (for example Yaari, 1964; Harvey, 1986, 1995), only with the
behavioral revolution were alternative ad hoc parametrical discount functions proposed,
and used systematically in the applied economics literature. Among them, the "quasi
hyperbolic" discount function (Phelps and Pollak, 1968; Laibson, 1997) is probably the
most popular.

The second explanation for discounting is simply to consider that future prospects
are uncertain. In this case, considering that the utility of future prospects are weighted
according to their probability of being effectively consumed at the given date is rea-
sonable (refer to Sozou, 1998; Dasgupta and Maskin, 2005, for a general discussion
of that topic). Among this literature, models of intertemporal choice with uncertain
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lifetimes are good tools to investigate the theory of discounting. The seminal paper
by Yaari (1965) considered expected utility maximizers with known probability distri-
butions of the"age of death", and a standard exponential discounting life-cycle utility.
More recent models considered various types of sophisticated utility frameworks to
address lifetime uncertainty. For example, Moresi (1999) considered an application of
the "ordinal certainty equivalent hypothesis" (Selden, 1978). Bommier (2006, 2013)
considered a concave transformation of the life-cycle utility to explain "risk aversion
with respect to length of life". Halevy (2008) used the"dual theory of choice" (Yaari,
1987). Ludwig and Zimper (2013), Groneck et al. (2012) and d’Albis and Thibault
(2012) considered an ambiguous survival probability.

In this study, we build a model of the intertemporal choice of consumption and
saving with an uncertain lifetime in which the agent psychologically transforms her
survival probability distribution, such as in the rank-dependent utility model (Quiggin,
1982), or in the cumulative prospect theory (Tversky and Kahneman, 1992). The idea
of introducing a rank-dependent utility in this setting was explored by Drouhin (2001)
and Bleichrodt and Eeckhoudt (2006). The originality of this study is that we use
continuous time modeling and optimal control to solve the model. With this method-
ology, we are able to discuss the important topic of time consistency, the main criteria
of rationality over time. Following Strotz (1956), there exists a conventional wisdom
in economics that considers that any departure from exponential discounting implies
time inconsistency. When considering uncertain prospects, part of the literature fo-
cuses on the related notion of dynamic consistency (refer to Machina, 1989; Etchart,
2002; Halevy, 2004a,b; Nebout, 2014, for a discussion).

The main result of the study is that any agent who transforms the probability
distribution of the age of death with a power function is time consistent. This result
provides a foundation for a rate of time preference that interacts multiplicatively with
the probability of dying instead of additively in the standard expected utility approach.
On empirical grounds, a calibrated version of the model shows that the multiplicative
rate of time preference has better properties than the traditional additive rate of the ex-
ponential discounting model. This multiplicative rate allows for the solution to certain
paradoxes of the literature (the hump of life-cycle consumption, excessive sensitivity
to variations in the interest rate).

The remainder of this study is as follows. Section 1 presents the intertemporal
utility functional used. Section 2 solves the model in the absence of life annuities.
Section 3 discusses time consistency and provides foundations for the multiplicative
model of the rate of time preference. Section 4 discusses a calibrated parametrical
version of the model on empirical grounds. Section 5 discusses the model when the
agent has access to life annuities. Finally section 6 concludes.

1 A Rank-Dependent Utility model of consumption
and savings with an uncertain lifetime

We consider an agent’s choice of her consumption profile. A consumption profile is a
function of time defined on the interval [0, T ], with 0 representing the age of birth and
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T being an arbitrary constant, interpreted as the maximum possible life duration for
the agent. Because we are interested in understanding the manner in which the timing
of the decision influences the choice of the consumption profile, we denote the date of
the decision by t ∈ [0, T ).
In a first step, we consider the case in which the agent, alive on age t, knows with
certainty her age at death, s. We make the following assumptions:

A1 If an agent knows with certainty her age of death s, her intertemporal preferences
are represented by an intertemporal utility functional assumed to be additive:

Vt (c, s) =

∫ s

t

F (τ − t)u (c (τ)) dτ (1)

with lim
c→0

u(c) = +∞, u′ (c) > 0 and u′′ (c (τ)) < 0.

A2 ∀τ ∈ [t, T ], F (τ − t) > 0, F ′(τ − t) ≤ 0

A3 (monotonicity according to lifespan). ∀c : s′ > s ⇒ Vt (c, s
′) > Vt (c, s)

A1 is the standard assumption for a life cycle model with a certain lifetime. This as-
sumption guarantees the existence of a strictly positive consumption profile throughout
the life cycle.

F (τ − t) is the riskless discount factor. When it is strictly decreasing the agent
exhibits preference for present consumption.

A1, A2 and A3 together imply that the per period felicity, u, and the intertemporal
utility functional, V , are both necessarily positive in their domain.

A3 indicates that, for a given consumption profile, outcomes are always ranked ac-
cording to lifespan. When introducing uncertainty, our model is a natural candidate
for using a rank-dependent utility.

The agent actually does not know with certainty her age of death.
In the remaining, we will use the letters s or τ for the age of the agent, when it
considered as a variable. For some critical ages of the life-cycle, we will use a variation
of the letter t (t, is "the age at which the agent plan her future consumption", T is the
"maximum possible age", tR will be "the age of retirement", etc.).
We assume that for a living agent at age t, the age of death s > t is an absolutely
continuous random variable defined on the interval [t, T ]. We denote by πt (s) > 0
the probability density function of this random variable and Πt (s), the cumulative
distribution function. Thus, we have:

Πt (s) =

∫ s

t

πt (τ) dτ

with Πt (T ) = 1.
Πt (s) is interpreted as "the probability of being dead at age s, knowing you are alive
at age t", and, (1− Πt (s)) as "the probability of being alive at age s, knowing you are
alive at age t". The usual rules concerning conditional probability apply:

∀s > t′ > t, (1− Πt′ (s)) (1− Πt (t
′)) = (1− Πt (s)) (2)
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and
πt′ (s) =

πt (s)

1− Πt (t′)
(3)

In the special case in which s = t′, we obtain the hazard rate at age s:

πs (s) =
πt (s)

1− Πt (s)
(4)

Thus, we face a special problem of choice under uncertainty. If we assume that the
agent is an expected utility maximizer, with an additively separable utility functional
as in Yaari (1965), we have the following:

EVt (c) =

∫ T

t

∫ s

t

F (τ − t)u(c(τ)dτ dΠt(s)

=

∫ T

t

∫ s

t

F (τ − t)u(c(τ)dτ πt (s) ds

(5)

We depart from this model by using a more general model of choice under uncertainty,
the rank-dependent utility model, introduced by Quiggin (1982, 1993), and popularized
by Tversky and Kahneman (1992) as an important part of their cumulative prospect
theory. This model has many very interesting properties: it introduces probability
transformation but in a manner that preserves first-order stochastic dominance; it
provides a solution to the so-called Allais paradox (Allais, 1953)1; and when time is
involved, it disentangles risk aversion from resistance to intertemporal substitution (the
log-derivative of the per period felicity function).

The idea is very simple. We simply replace the cumulative distribution function,
Πt, by an increasing transformation of it, h(Πt), in the expected utility model given by
equation (5).

RDUt (c) =

∫ T

t

∫ s

t

F (τ − t)u(c(τ)dτ dh(Πt(s))

=

∫ T

t

∫ s

t

F (τ − t)u(c(τ)dτ h′(Πt(s))πt(s))ds

(6)

with h being a probability weighting function assumed to be continuous and twice
differentiable and such that: h (0) = 0, h (1) = 1 and h′ > 0.
Notice that (5) is a special case of (6) when h (Πt (s)) = Πt (s). Integrating (6) by
parts, we obtain:

RDUt (c) =

∫ T

t

(1− h (Πt (s))F (τ − t))u (c (s)) ds (7)

For the agent, the expected present value at age t of the utility stream between t
and T is the integral over this interval of the product of the utility of consumption at
each age s of the interval with the subjective weight given by the agent to the event

1For readers unaware of this literature Appendix A provides a quick introduction to the paradox
and its solution within RDU.
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"being alive at age s". Equation (7) makes explicit our initial intuition within the
continuous time framework. The factor ft (s) = (1− h (Πt (s)))F (τ − t) is the effective
discount factor applied to utility of the consumption at age s viewed from age t. This
factor depends on the probability distribution of the ages of death and the subjective
transformation of this probability distribution, and on the riskless discount factor. The
effective discount factor is continuous, differentiable and strictly decreasing from one
to zero on the interval [t, T ].

Taking the log-derivative of the effective discount factor, we also define the effective
rate of discount of utility at age s viewed from age t:

θt(s)
def
= πt (s)

h′ (Πt(s)))

1− h (Πt (s))
+

F ′(s− t)

F (s− t)
(8)

The effective rate of discount is the sum of two terms. The first term stems from lifetime
uncertainty, and, following Drouhin (2001), it can be decomposed in two factors. The
first factor, πt (s), the probability density associated with the event "dying at age s,
knowing that your alive at age t", is interpreted as the objective part of time preference.
The second factor, h′ (Πt (s))/(1− h (Πt (s))), depends on the manner in which the
agent transforms probability distributions and its value depends on her preferences.
For that reason, this second factor is qualified as subjective2. This factor stems from
the use of a rank-dependent formulation and is the main innovation of this article.
Thus, it is of first importance when discussing the consequences of this formulation
for standard results on time consistency and life insurance in the following section.
Finally, and more classically, the second term of the effective rate of discount is the
riskless rate of time preference, which is also subjective and which intensity does not
depend on lifetime uncertainty. In the literature, this second term is frequently called
pure rate of time preference.

Now that the effective rate of time preference is defined, rewriting the rank-dependent
intertemporal utility functional (7) as follows is convenient:

RDUt (c) =

∫ T

t

exp

(∫ t

s

θt (τ) dτ

)
u (c (s)) ds (9)

We now investigate the properties of the choice of the optimal consumption path made
by an agent on age t.

2 Optimal consumption path with no life annuities

To express the optimal consumption path, we first define the feasible set of consumption
profiles. We assume that, at each age s, the living agent receives a flow of non-financial
income w(s), assumed to be strictly positive and differentiable, and a flow of financial
income proportional to her assets a (s). These incomes are either used for current
consumption or saved for future consumption. At this stage, we assume that no life
annuities or insurance exists. The only assets available for savings are standard bonds,

2Hurd et al. (1998) empirically investigate the idea that an agent can subjectively transform her
survival probability distribution.
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that earn a constant rate of interest, r. Thus, at each time s ∈ [t, T ], the standard
intertemporal budgetary constraint holds:

∀s ∈ [0, T ] , ȧ(s) = w(s) + ra(s)− c(s) (10)

We also assume that no "bequest motive" exists, implying that an agent living her
maximum possible life-duration chooses to leave no bequest (a(T ) = 0). Thus, if we
sum on the interval [t, T ] the differential constraints (10) at each age weighted by the
economical discount factor exp (−r (s− t)), after some simple manipulations, we get:

a(t) +

∫ T

t

w(τ)e−r(τ−t)dτ =

∫ T

t

c(τ)e−r(τ−t)dτ (11)

This is the very standard life cycle budgetary constraint, the present value of all incomes
over the life cycle is equal to the present value of the consumption stream.

Using the same method, but integrating over the sub-interval [t, s] ⊂ [t, T ], we can
express the level of asset at any age :

a(s) = a(t) er(s−t) +

∫ s

t

(w(τ)− c(τ)) er(s−τ)dτ (12)

In this section we do not consider any borrowing constraint. Section 4 introduce
this constraint and discusses it extensively.

We denote ct(s) as the optimal consumption path decided at age t for the time
interval [t, T ]. Thus ct(s) is the solution to the following program:

Pt


max

c
RDUt(c) =

∫ T

t

(1− h (Πt(s)))F (s− t)u (c(s)) ds

s.t. ∀s ∈ [t, T ), ȧ(s) = w(s) + r a(s)− c(s))

a(t) = cst

a(T ) = 0

Because of the continuity of h, w, Πt and the continuity and strict concavity of u this
program is shown to admit a unique solution that is continuous and differentiable. By
applying Pontryagin’s maximum principle, the resolution of such a program implies
to solve a system of differential equations. If, for not losing generality of the results,
we refuse to specify a special "easy to use" functional form for the per period felicity
function, earnings function and probability distribution of the age of death, the only
thing we can do is to derive the rate of growth of the optimal consumption path planned
at age t.

Denoting γt(s) as the coefficient of relative resistance toward intertemporal substi-
tution,

with γt(s)
def
= −u′′ (ct(s))

u′ (ct(s))
ct(s) (13)

we have :
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Proposition 1. Without life annuities, at each age s, the rate of growth of the optimal
consumption path planned at age t is:

G(t, s) =
ċt(s)

ct(s)
=

r − θt(s)

γt(s)
(14)

and the consumption function is :

ct(s) = ct(t) exp

(∫ s

t

G(t, τ)dτ

)
(15)

Proof: The Hamiltonian of agent’s program is:

H(c(s), a(s), λ(s), s) = (1− h (Πt (s)))F (s− t)u (c (s)) + λ (s) (w (s) + r a (s)− c (s))

First order conditions give:

∂H

∂c
= 0 ⇒ λ (s) = (1− h (Πt (s)))F (s− t)u′ (ct (s)) (16)

∂H

∂a
= −λ̇(s) ⇒ λ̇(s) = −rλ(s) (17)

Taking the logarithm of (16) and differentiating according to s we get:

λ̇(s)

λ(s)
= −h′ (Πt (s))πt (s)

1− h (Πt (s))
+

F ′(s− t)

F (s− t)
+

u′′ (ct (s))

u′ (ct (s))

dc

ds
(s) (18)

Collapsing the equations, and using definition (8), we deduce equation (14). Differen-
tiating equation (15), we easily retrieve equation (14). �

The rate of growth of the consumption path is the difference between the rate of
interest (economic discount rate) and the effective rate of time preference, both divided
by an index of the curvature of the utility function usually referred as the coefficient of
relative risk aversion or, more properly in this context and according to Gollier (2001),
as the resistance to intertemporal substitution. The important point is that, as in Yaari
(1965) the effective rate of discount is no longer constant and provides a wide variety
of possible dynamics for consumption. However, in contrast to Yaari (1965), not only
the properties of the probability distribution of the ages of death matter. The manner
in which agents subjectively transform this probability distribution also matters. If
we want to go further, we must specify additional restrictions for the model, which is
done from a normative point of view in the next section, and from a descriptive point
of view in the subsequent section.

3 Normative point of view: Time consistency

The intertemporal choice model with uncertain lifetime combines both risk and time.
We can specify the model for being consistent with some criteria of rationality. Be-
cause the model uses rank-dependent utility, it fulfills necessarily and by construction
the main axiom of rationality toward risk, first-order stochastic dominance (Quiggin,
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1993). According to decisions related to time, the main criterion of rationality is time
consistency as proposed by Strotz (1956). What restriction do we have to impose
on the probability transformation function to fulfill time consistency? To answer this
question, we must properly define the notion of time consistency. As in Strotz (1956),
Caputo (2005), and Drouhin (2009, 2012), we use a "choice-based" methodology that
enable us to compare agents’ effective decisions on different dates, meaning that we
consider the solution to maximization programs under constraints.3 In the absence of
new information, an agent is said to be time consistent if she behaves in the future as
she planned to in the past.

Definition 1 (Time consistency). We denote ctand at the solution to program Pt. If
we denote ct′and at′, the optimal solution to program Pt′, with t′ ∈ [t, T ] and:

Pt′


max

c
RDU(c) =

∫ T

t′
(1− h (Πt(s)))F (s− t′)u (c(s)) ds

u.c. ȧ(s) = w(s) + r a(s)− c(s))

a(t′) = at(t
′)

a(T ) = 0

then an agent is time consistent if and only if:

∀t ∈ [t0, T ] , ∀t′ ∈ [t, T ] ,∀s ∈ [t′, T ] : ct (s) = ct′ (s) (19)

A corollary to this definition is that, to be time consistent, the rate of discount
at each age s must be independent from the decision age t.4 In the special case of
expected utility with no "pure time preference", θt (s) = πs(s). Whatever the form of
the probability distribution, the rate does not depend on the planning decision age, it
is "time distance independent", and time consistency holds. However, for other cases,
the distribution probability of the age of death and the rank-dependent utility provide
a special mathematical structure for the effective discount rate and factor. We notice
that, in the most general case θt (s) is time-distance dependent because it depends on
Πt (s), a strong presumption for time inconsistency. Nevertheless are there some other
cases for which time consistency holds?

Proposition 2. An agent is time consistent if and only if her probability distribution
transformation function is of the form h (x) = 1 − (1− x)α with (α > 0) and, the
discount factor is such that ∀t′ ∈ [t, T ], ∀s ∈ [t′, T ], F (s− t′) = δ(t′) exp[−β(s− t)] with
β as a constant and δ(t′) as an arbitrary function. In this case:

∀t′ ∈ [t, T ],∀s ∈ [t′, T ], θt′ (s) = θ (s) = απs (s) + β (20)

Proof:
(sufficiency)

Considering (20) and proposition 1, we have:
3Some articles use an "axiomatic" or "preferences-based" definition of time consistency (Ahlbrecht

and Weber, 1995; Moresi, 1999, for example).
4Refer to Drouhin (2012) for a proof.
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∀t′ ∈ [t, T ], ∀s ∈ [t′, T ], ċt(s)
ct(s)

=
ċt′ (s)
ct′ (s)

.
Considering the life cycle budgetary constraint of programs Pt and Pt′ we deduce
that at(t

′) +
∫ T

t′
w(s)e−r(s−t′)ds =

∫ T

t′
ct(s)e

−r(s−t′)ds and at′(t
′) +

∫ T

t′
w(s)e−r(s−t′)ds =∫ T

t′
ct′(s)e

−r(s−t′)ds. By definition of program Pt′ we have at′(t
′) = at(t

′). Thus, we
have:

∫ T

t′
ct(s)e

−r(s−t′)ds =
∫ T

t′
ct′(s)e

−r(s−t′)ds.
The two functions have the same slope on the interval [t′, T ] and the same discounted
integral. That implies that they are equal all over the interval.

(necessity)
If the agent is time consistent, she fulfills equation (19). A strictly positive and differ-
entiable ct implies that:

∀t ∈ [0, T ] , ∀t′ ∈ [t, T ] ,∀s ∈ [t′, T ] :
ċt(s)

ct(s)
=

ċt′(s)

ct′(s)

Taking into account(14), (8), and (3) implies that:
∀t ∈ [0, T ] , ∀t′ ∈ [t, T ] , ∀s ∈ [t′, T ] :

h′ (Πt (s))

1− h (Πt (s))
=

h′ (Πt′ (s))

(1− h (Πt′ (s))) (1− Πt (t′))
(21)

and
F ′(s− t′)

F (s− t′)
=

F ′(s− t)

F (s− t)
(22)

Equation (21) should hold in the particular case in which s = t′. Considering this
case and noting that Πt (t) = 0, we obtain:

∀t ∈ [0, T ] , ∀t′ ∈ [t, T ] :
h′ (Πt (t

′))

1− h (Πt (t′))
=

h′ (0)

(1− Πt (t′))
(23)

This first-order differential equation has a set of solutions fully described by h (x) =
1− (1− x)α, with α = h′ (0).
For Equation (22) to hold F should be multiplicatively separable in t and s. The only
way to achieve this result is to have an exponential function of the form F (s − t′) =
δ(t′) exp[−β(s− t)]. �
Corollary 2.

a. When α > 1, h is strictly concave.
b. For time consistent agents with the same per period felicity function, risk

aversion in the sense of Bommier et al. (2012) increases with parameter α.

Proof:
2-a is obvious: h′′(x) = −(α− 1)α(1− x)α

2-b Bommier et al. (2012) worked with a formulation of the rank-dependent utility
theory using a probability weighting function based on the decumulative distribution
function ϕ. We have: 1− ϕ(1− x) = h(x) ⇒ ϕ(1− x) = (1− x)α. The convexity of ϕ
increases with α. Then, we simply apply Bommier et al. (2012), p. 1628. �

Corollary 2 is important for choosing a "realistic" value for α. As was already
stated, a concave probability transformation offers a solution to the Allais paradox.
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Thus, a value of α > 1 seems realistic and implies that agents show more risk aversion
than in the standard expected utility model.

Some points should be emphasized.

1. The expected utility model is not the only model compatible with time consis-
tency. The rank-dependent utility model with a power function for transforming
the probability distribution5 also implies time consistency, which provides behav-
ioral foundations for a model of intertemporal choice that is different from the
original discounted expected utility model.
Considering the effective rate of discount of a time-consistent agent given by
Equation (20), the intertemporal utility functional can be rewritten as:

RDUt (c) = Vt(c) =

∫ T

t

e
∫ t
s (απτ (τ)+β)dτu (c (s)) ds (24)

2. In our model, as in Yaari (1965), lifetime uncertainty is a primitive of time pref-
erence. The hazard rate πτ (τ) is the main component of the rate of discount.
We name this rate the "objective" component of time preference, which indicates
that the main reason for an existing bias in favor of present consumption is that
we know that we are mortal, but we do not know when we will die; we simply
have an idea of the distribution probability of the age of death. However, the
fact that time preference has an objective component does not mean that it does
not have a subjective component. In our model, this component is captured by
two constant parameters.
β is the traditional pure rate of time preference. It is named "pure" because this
type of time preference is independent of the probability of dying, indicating that
with β > 0, even an "immortal agent" shows preference for present consumption.
In the remainder of this study, we will call β the additive rate of time preference
to distinguish it from α, which is called the multiplicative rate of time preference.
This rate is the main innovation of this article. If α = 1 our model is the standard
Yaari (1965) model. When α > 1, this means that the agent gives a psychological
weight to present consumption more important than the instantaneous probabil-
ity of dying. In this case the agent demonstrates relative preference for present
consumption. In RDU/ cumulative prospect theory, the behavior is interpreted
as "pessimistic" in the sense that the agent tends to overweight her probabil-
ity of dying.6 In the opposite situation, when α < 1, the agent demonstrates
a preference for future consumption and underweights her probability of dying
("optimistic" behaviour). It is important to precise that the use of the terms
"optimism" and "pessimism" should not be interpreted as irrationality. As pre-
viously stated, agents with preferences represented by the utility functional (24)
fulfills transitivity, first-order stochastic dominance, and time consistency.

3. Thus, the generalisation of Yaari (1965) is characterised by the existence of two
parameters, instead of one, that capture time preference. According to Occam’s

5Diecidue et al. (2009) provided axiomatic foundations for such probability transformation function.
6Refer to Wakker (2010), 172-176, for an extensive discussion of probability transformation as

pessimism/optimism.
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razor principle, a scientist should not multiply parameters without necessity.
Therefore, for a better understanding of the innovation of this study, comparing
two polar cases of the generalized model with each case characterized by only one
parameter is useful. The first case is characterized by α = 1 and β ̸= 0. This
model is identical with the one by Yaari (1965). We call it the model of additive
rate of time preference. In this case the intertemporal preferences of the agents
are represented by:

V +
t (c) =

∫ T

t

e
∫ t
s (πτ (τ)+β)dτu (c (s)) ds (25)

The second case is characterized by α ̸= 1 and β = 0, which we call the model of
multiplicative rate of time preference. In this case, the intertemporal preferences
of the agents are represented by:

V ×
t (c) =

∫ T

t

e
∫ t
s απτ (τ)dτu (c (s)) ds (26)

4. To understand the potential of the multiplicative rate of time preference, con-
sidering the special case of an infinite horizon i. e. T being infinite, can be
interesting. In a first step, we assume that for all s ∈ R+, πs(s) = π = cst.
In this case the intertemporal utility functional is equivalent to the exponential
discounting model (with α π + β = θ):

RDUt (c) =

∫ +∞

t

e−θ (s−t)u (c (s)) ds (27)

If we adopt a more realistic model of the uncertain lifetime, such as for example
the Gompertz or the Gompertz-Makeham law of mortality, then the hazard rate
increases with age, which has an important consequence as noted in the following
proposition.

Proposition 3. If the consumption stream is bounded and age t̂ exists such that
for all t > t̂, ∂πt(t)

∂t
> 0, then, for all T ∈ R+ + {+∞}, the intertemporal

rank-dependent utility functional (24) is always definite.

Proof: Obvious. �
This proposition indicates that our concept of a multiplicative rate of time pref-
erence is more robust than the usual notion of pure time preference from the
exponential discounting model. In particular a preference for present consump-
tion in our model (α > 1) is not a prerequisite for the intertemporal utility
functional to be definite, even when the horizon is infinite. From a behavioral
perspective, this statement indicates that our model is a tool to explore possi-
bilities than cannot be addressed using the standard discounted expected utility
model.

5. As we have already noted, uncertain lifetime is an fundamental characteristic of
human condition that is sufficient to explain "preference for present consump-
tion". However, when economists started to model intertemporal choice they
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lacked the mathematical skills to build a model that accounts for this uncer-
tainty. Therefore, they invented the ad hoc notion of pure time preference to
explain the observed behavioral bias in favor of present consumption. As was
just shown, the exponential discounting model is an approximation of the model
proposed in this study. However, as a thought experiment, imagine that with all
the mathematical skills we have today, we can go back in the past to be the first
to model intertemporal choice of consumption and savings. As a primitive for
time preference, we can choose to incorporate in our model an assumption of un-
certain lifetime or an assumption of "pure time preference" or both assumptions
as we did in the beginning of this paper. If we seriously consider Occam’s razor
principle, which states that pluralitas non est ponenda sine necesitate, then we
have, in a first step, to choose only one primitive and the more obvious of the
two. In this case, we seem to need to eliminate the assumption of a "pure time
preference". The consequence is clear, the multiplicative model of time prefer-
ence should be considered as the basic model of intertemporal choice and, the
introduction of the notion of "pure time preference" should only be considered,
in a second step, if the basic model fails to fit the data. Unfortunately, the path
followed by the economic theory of intertemporal choice has been very different
from the one we just imagine. Education and training have so deeply imbedded
the notion of "pure time preference" in the mind of the economist that accepting
the possibility of discarding it requires significant effort.

In the next section, we compare the multiplicative and the additive models of the rate
of time preference in the context of a realistic simulation of agent choice.

4 Descriptive point of view: Explaining the life-cycle
hump in consumption

To better understand the differences between the additive and the multiplicative models
of time preference, running numerical simulations with a parametrical version of the
model is useful. In particular observing how two versions of the model reproduce
certain stylized facts and paradoxes of the empirical literature on consumption and
savings may be interesting.

At least since the work of Thurow (1969), that the intertemporal consumption profile
is hump shaped with a maximum consumption between the ages of 45 and 50 is well
known (see Attanasio and Weber, 2010, for a recent and complete survey). This result
is paradoxical in regard to the basic model of the intertemporal choice of consumption
and savings, because of the independency between the slope of the consumption profile
and age in this model.7

Following, the intuition in Thurow (1969), the main line of the literature attempts to
solve the paradox relying on the co-existence of a borrowing constraint and a negative
slope for the optimal unconstrained consumption profile. Because the slope of the
income profile is positive, an unconstrained agent wants to borrow in the beginning of

7Another related paradoxical observation is the rapid decline of consumption in the vicinity of the
age of retirement (see Battistin et al., 2009, for a recent introduction to this topic).
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her life. Because she is not allowed to do so, her consumption matches her income at
least during the first part of her working life. This effect is amplified if labor income
is uncertain, adding to the model a precautionary motive for savings that is stronger
than impatience for young agents (Carroll, 1997). Among others, Gourinchas and
Parker (2002) empirically showed that those buffer-stock savings models can explain
the hump in the consumption profile. Other explanations also exist. For example,
following Heckman (1974), if consumption and leisure are substitute, agents work more
during middle age when productivity and wages are higher, and they are compensated
by higher consumption during these ages. Thus, without market imperfections, one
can obtain a life-cycle consumption profile that follows the productivity and earnings
profiles, and thus is hump shaped.

Of course, because the life-cycle model of intertemporal choice with uncertain life-
time implies an age-increasing effective rate of discount, it is a good candidate for
solving the paradox. Strangely, only a few articles explore this relation ((Bütler, 2001;
Hansen and Imrohoroglu, 2008; Feigenbaum, 2008). The latter remains a bit skeptical
on the possibility for uncertain lifetime to explains the hump on its own, because of the
necessity for a very specific set of parameters. In particular Feigenbaum (2008), p. 863,
argued that, given the necessity of a high intertemporal elasticity of substitution8 to fit
the data, in general equilibrium a small change in the rate of interest has a dramatic
effect on the age and size of the hump.

However, from a theoretical point a view, the preceding reasoning, is conditioned
by the special form for the intertemporal utility functional chosen by the author. That
is precisely the point of Bommier (2013), that accounts for the hump in a non standard
model of intertemporal choice with an uncertain lifetime. The model remains in the
expected utility framework but departs from Yaari (1965) seminal model by using
a life-cycle utility functional that is stationary, but no longer additively separable.
Bommier (2013) built on previous work (Bommier, 2006, 2007) and insist on the role of
intertemporal correlation aversion (ICA) to model intertemporal choice. Many authors
insisted on the fact that the hazard rate is too low at the age of the hump to explain
it. Bommier (2013) showed that, because ICA implies risk aversion with respect to life
duration, it magnifies the impact of the probability of dying. Because Bommier (2013)
calibrated his model in the case in which the agent can purchase perfect annuities, we
will retrun to his model in the next section.

Our theoretical approach is a generalization of the standard model, that is sym-
metric from the one of Bommier9. As was shown, we keep additive separability of the
life-cycle utility functional when life duration is certain, but we relax the assumption
of expected utility to the more general rank-dependent utility approach. Our model
of the multiplicative rate of time preference, when calibrated to fit the empirical char-
acteristics of the hump in life-cycle consumption solves the problem of robustness to
change in the parameters raised by Feigenbaum (2008). However, before proving that,
we have to make some complementary assumptions to render the model eligible such
an empirical calibration.

81/γ in our model.
9Of course the approach of Bommier (2013) and the one of this paper could be merged in an even

more general model
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The first modification that we make is to choose a more specific per period felicity
function. Because we were interested in obtaining the most general theoretical results,
until now we have worked with a per period felicity function that was only assumed
to be positive, increasing and concave. When coming to numerical simulations, the
cost of this general formulation is that the consumption function can only be defined
implicitly, as shown in Proposition 1, equation (15). For an explicit formulation of the
consumption function, then we must assume that the per period felicity function is a
CES function (u(c) = c(1−γ)/(1− γ), with γ ∈ (0, 1)∪ (1,+∞). The case γ = 1, which
corresponds to a logarithmic per period felicity function is excluded from the analysis
by assumption A3, which imposes positivity over the entire domain of the per period
felicity function.

Thus the two polar cases of additive and multiplicative time preference are rewritten
as follows:

V +
t (c) =

∫ T

t

exp

(∫ t

s

(πτ (τ) + β) dτ

)
c(s)1−γ

1− γ
ds (28)

V ×
t (c) =

∫ T

t

exp

(∫ t

s

απτ (τ)dτ

)
c(s)1−γ

1− γ
ds (29)

The second modification that must be made is to explicitly account for the borrowing
constraint. As suggested by Yaari (1965), in a world with no life insurance, an agent
with uncertain lifetime finds no one who will lend her some money. Therefore, for all
s ∈ [t, T ), a(s) ≥ 0. Leung (1994, 2001, 2007) emphasized the impossibility of having
an interior solution over the entire domain of the consumption function. Under very
general conditions, a non empty final interval of ages [t∗, T ] always exists in which the
constraint binds.

The last required modification is to consider the possibility of the income profile as
discontinuous at the age of retirement.10

The agent’s program is rewritten as:

P ′
t



max
c

Vt(c)

s.t. ∀s ∈ [t, T ), ȧ(s) = w(s) + r a(s)− c(s))

∀s ∈ [t, T ), a(s) ≥ 0

a(t) = cst

a(T ) = 0

The Hamiltonian of the agent’s program is:

H(c(s), a(s), λ(s), s) = exp

(∫ s

t

−θ(τ)dτ

)
u (c (s)) + λ (s) (w (s) + r a (s)− ct (s))

To address the borrowing constraint, we formulate the generalized Lagrangian of the
problem:

L(c(s), a(s), λ(s), µ(s), s) = H(c(s), a(s), λ(s), s) + µ(s)a(s)

10Because of piecewise continuity and differentiability, the "dot" notation refers now to the right
derivative of the function of time used, i.e. ȧ(s) = lim

τ→s+

da
dτ (τ)

14



First-order conditions give:

∂L

∂c
= 0 ⇒ λ (s) = exp

(∫ s

t

−θ(τ)dτ

)
u′ (c (s)) (30)

∂L

∂a
= −dλ

ds
(s) = −λ̇(s) ⇒ λ̇(s) = −rλ(s)− µ(s) (31)

a(s) ≥ 0 (32)

µ(s) ≥ 0 (33)

µ(s)a(s) = 0 (34)

For a given intertemporal utility functional V , we denote IVi ⊂ [t, T ], all the time
intervals over which the borrowing constraint is slack (a(s) > 0). For every s belonging
to one of these intervals, equation (34) gives µ(s) = 0, thus the rate of growth of
consumption is the same as in Proposition 1.

We consider the simplest case in which the borrowing constraint is slack in the
interval [t, t∗) and binding on the interval [t∗, T ].11 Obviously, t∗ is endogenous and de-
pends on the choice of the intertemporal utility functional. We denote c+t as the optimal
consumption profile derived from the additive model, c×t as the optimal consumption
profile derived from the multiplicative model, and t∗+ and t∗× the corresponding values
of t∗. Thus we have:{

∀s ∈ [t, t∗+) c+t (s) = c+t (t) exp
(∫ s

t
r−πτ (τ)−β

γ
dτ

)
∀s ∈ [t∗+, T ] c+t (s) = w(s)

(35)

and {
∀s ∈ [t, t∗×) c×t (s) = c×t (t) exp

(∫ s

t
r−απτ (τ)

γ
dτ

)
∀s ∈ [t∗×, T ] c×t (s) = w(s)

(36)

Of course, these two models are polar cases, and having mixed models characterized
by three parameters, (α, β, γ) is possible. At some point, introducing the following
notation is convenient:{

∀s ∈ [t, t∗), ct [α, β, γ] (s) = ct [α, β, γ] (t) exp
(∫ s

t
r−απτ (τ)−β

γ
dτ

)
∀s ∈ [t∗, T ] ct [α, β, γ] (s) = w(s)

(37)

These notation results in c+t = ct [1, β, γ] and c×t = ct [α, 0, γ].
The last problem to solve is the calculation of the starting level of the consumption

function and the value of t∗. We start with the additive model. The life-cycle budgetary
constraint given by equation (11) and the explicit form of the optimal consumption
path given by equation (35) imply:

c+t (t) =
a(t) +

∫ t∗+
t

w(s)e−r(s−t)ds∫ t∗+
t

exp
(∫ s

t

(
r−πτ (τ)−β

γ
− r

)
dτ

)
ds

(38)

11Fortunately, it is the case in all the subsequent simulations.
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Because the Hamiltonian of the problem is locally strictly concave in c for every age
on which w is continuous, c is continuous for all s ̸= tR. Thus if t∗ ̸= tR, we also have
c(t∗) = w(t∗) and then :

c+t (t) =
w(t∗+)

exp
∫ t∗+
t

r−πτ (τ)−β
γ

dτ
(39)

According to equations (38) and (41), t∗+ is necessarily a solution to the equation
φ+(x) = 0, with :

φ+(x) =

(
a(t) +

∫ x

t

w(s)e−r(s−t)ds

)
exp

(∫ x

t

r − πτ (τ)− β

γ
dτ

)
−w(x)

∫ x

t

exp

(∫ s

t

(
r − πτ (τ)− β

γ
− r

)
dτ

)
ds

(40)

This equation can be solved numerically and may admit more than one solution.
Leung (2007)’s theorem 3 and 4 discussed extensively the existence, uniqueness and
optimality of the terminal wealth depletion time, in the case of a discontinuous wage
profile. Therefore, if an isolated solution exists in the interval (tR, T ), then it is the
unique optimal terminal wealth depletion time solution of the program P ′

t. That will
be the case in the subsequent simulations.

The reasoning is the same for the model of the multiplicative rate of time preference:

c×t (t) =
w(t∗×)

exp
∫ t∗×
t

r−απτ (τ)
γ

dτ
(41)

and

φ×(x) =

(
a(t) +

∫ x

t

w(s)e−r(s−t)ds

)
exp

(∫ x

t

r − απτ (τ)

γ
dτ

)
−w(x)

∫ x

t

exp

(∫ s

t

(
r − απτ (τ)

γ
− r

)
dτ

)
ds

(42)

Finally, we choose a realistic parametrical form for the mortality pattern and the
life-cycle budgetary constraint.

A law of mortality that fits the data quite well and remains tractable within an in-
tertemporal choice model is the Gompertz law, in which the hazard rate πs(s) increases
at a constant rate. However, using this type of law over all the lifespan necessitates
allowing the maximum possible life duration T to go to infinity. Unfortunately, fol-
lowing this path has an important mathematical drawback, which is the difficulty in
specifying a proper transversality condition with an infinite horizon. To avoid this
issue, we assume a finite horizon T and that an age T ′ < T exists such that, for all
s ∈ [t, T ′], πs(s) = b exp (q(s− t)). For s > T ′, we will simply assumed that πs(s) is
increasing and tends to infinity in s = T . As long as all of the intervals in which the
borrowing constraint is not binding belong to [t, T ′], we are able to numerically solve a
parametrical version of the model, thanks to Leung (1994). In practice, we simply need
to have t∗ < T ′. For the numerical simulation, we estimated the parameters b and q
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using the United States Life Tables for 2009 as provided by Arias (2014). Using a sim-
ple linear fit of the log of the hazard rate between the ages of 25 and 99, we found that
b = 0.000569 and q = 0.0824. We assume that t = 25, T = 130 and T ′ ∈ (100, 130).

We now turn to the parametrical specification of the life cycle budgetary constraint.
We assume that yearly net salary increases at a constant rate, g, until the age of
retirement tR ∈ [t, T ]. After retirement, agents earn a constant pension. Thus, we
have: {

w(s) = w(t)eg s ∀s ∈ [t, tR)

w(s) = ρw(t)eg tR = cst ∀s ∈ [tR, T ]
(43)

with ρ ∈ [0, 1], as the replacement ratio. This formulation of life cycle earnings in-
troduces a discontinuity (a downward jump) in the differential constraint as in Leung
(2001, 2007).

For simplicity, we normalize the initial salary at w(t) = 1 and choose g = 0.005.
The age of retirement is fixed at tR = 65 and the replacement ratio, ρ = 0.60. We also
assume a long term interest rate of 3 percent per year (r = 0.03) and an initial asset
level that corresponds to half a year’s salary (a(t) = 0.5).

For each version of the utility function, two parameters remain to be specified:
(α, γ×), for the model of the multiplicative rate of time preference and (β, γ+), for the
additive one. These parameters are not directly observable, however, because they are
structural, they can be inferred from the observable characteristics of the consumption
hump. This hump is described by two characteristics, the age at the peak, tH , and the
size of the hump captured by the ratio ct(tH)/ct(t) = SH . In this section, we retain a
value of tH = 48 and SH = 1.2.

The first step is to determine the value of the respective rate of time preference for
each model. Doing this is easy considering that, at age tH , by definition, the slope of
the consumption function is equal to zero. Thus α is the solution of the one unknown
linear equation r − απtH (tH) = 0 and θ is the solution of r − πtH (tH)− β = 0. Given
the values of the parameters, πtH (tH) = 0.037861. Thus, the rates of time preference
corresponding to the peak of the hump at age 48 are: α = 7.92381 and β = 0.0262139.

Knowing the size of the hump, we infer the value of the coefficient of relative re-
sistance toward intertemporal substitution, γ. We start with the multiplicative model.
γ× is the solution of the following equation :∫ tH

t

r − απτ (τ)

γ× dτ = ln (SH) (44)

Given the parameter values, we obtain γ× = 2.08773. For a clear understanding of the
compared properties of the two polar models, drawing c×t and c+t is convenient when
both functions share the same coefficient of relative resistance toward intertemporal
substitution (Figure 1).

By construction the two consumption profiles reach their maximum at the same
age, tH . However, as long as the borrowing constraint is slack for both profiles, c×t is
everywhere steeper than c+t . This result comes from coefficient α, which is greater than
1 and magnifies the negative effect of the hazard rate. The implication is straightfor-
ward, as long as both profiles are calibrated with the same tH and γ, we always have
c×t (t) < c+t (t), c

×
t (tH) > c+t (t−H) and t∗× < t∗×.

17



Figure 1: Comparison of c×t and c+t when γ× = γ+.
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Of course, to make an honest comparison, we must calibrate γ+ to explain the same
size of the hump SH = 1.2 by solving the following equation:∫ tH

t

r − πτ (τ)− β

γ+
dτ = ln (SH) (45)

Given the values of parameters, we obtain γ+ = 0.263476. Because the model of the
additive rate of time preference is similar to the standard Yaari model used by Feigen-
baum (2008), finding a value of γ+ in the same order of magnitude is not surprising.12.
The striking observation is the difference between γ+ and γ×. In fact, in the model
of the additive rate of time preference, for a given rate of interest, the only parameter
that influences the slope of the consumption profile is precisely the relative resistance
toward intertemporal substitution, γ. Therefore, a "small" γ+ (less than 1) is required
to fit the size of the hump. In contrast, as was previously noted, the multiplicative
rate of time preference α magnifies the slope of the consumption profile. Therefore,
a "large" γ× is required to flatten the consumption profile, a very good point for the
model of a multiplicative rate of time preference, because it allows a solution to the
paradox of the macroeconomic literature concerning conflicting estimations on the in-
tertemporal elasticity of substitution (i.e. the inverse of the relative rate of resistance
toward intertemporal substitution). Many studies that attempted to explain the con-
sumption hump required a γ lower than 1, whereas studies that attempted to estimate

12With r = 3.5 and tH = 45, Feigenbaum (2008), p. 835, found a partial equilibrium value of
β = 0.027 and γ = 0.294
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the sensitivity of current consumption to variations in interest rates generally estimated
a γ higher than 1 (see Attanasio and Weber, 2010, 708-711, for a survey).

Now that we have calibrated the multiplicative model of the rate of time preference
and the additive model to fit the same level of r, tH and SH , we answer the question
on the differences between c×t and c+t . The answer is very simple, there is no difference!
The linearity of the rate of growth of consumption according to the hazard rate, makes
it easy to demonstrate the identity of c×t and c+t , as long as both functions are calibrated
to fit the same levels of r0, tH and SH and evaluated for r = r0. In this case, we have:

∀s ∈ [t, T ],
r0 − πs(s)− β

γ+
=

r0 − απs(s)

γ× (46)

That implies that γ+ = γ×/α and β = r0(α− 1)/α.
Of course, when coming to a comparative statics analysis of the impact of a vari-

ation in the interest rate, the two functions respond very differently. Figure 2 shows
the effect of an increase in the rate of interest by 0.25 point. The left superscripts 0
and 1, for the consumption functions and endogenous variables, denote that the func-
tion/variable is calculated using, respectively, the initial and the terminal value of the
interest rate. Considering the additive model of the rate of time preference, we see that

Figure 2: Effect of an increase of r on c×t and c+t .

30 40 60 80 90

0.6

0.8

1.0

1.2  0 0

t t
c c
× +
=

14243

 1
t
c
×

 1
t
c
+

 1t
∗

+

 1t
∗

×

 0t
∗ 1

H
t
+ 1

H
t
× 0

H
t

age

 c

Out[56]=

r0 r1 Α Β Γ´ Γ+

0.03 0.0325 7.92381 0.0262139 2.08773 0.263476

0
tH

1
t
H

´ 1
t
H

+ 0
t
* 1

t´
* 1

t+
*

48 48.9714 54.153 68.6518 69.1454 72.2661

0
ctHtL

1
ct
´ HtL 1

ct
+HtL 0

ctHtHL�
0
ctHtL

1
ct
´H1t

H

´ L�1ct
´Ht 1

ct
+H1t

H

´ L�1ct
+HtL

0.991964 0.972068 0.837986 1.2 1.23424 1.54065

a relatively small increase in the rate of interest by 0.25 point implies a very important
increase of more than six years in the age at the peak of consumption (48 → 54.15) and
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a very important increase in the size of the hump (1.2 → 1.54). The additive model
shows an excessive sensibility to the rate of interest, denoting the lack of robustness
already pointed out by Feigenbaum (2008). This lack of robustness comes from the too
low value of γ+ required to fit the initial value of the size of the hump. In contrast,
the adjustment is very smooth in the case of the multiplicative model of the rate of
time preference. The age at the peak increases by less than one year (48 → 48.97)
and the size of the hump only increases from 1.2 to 1.23. This property of smoothness
seems more realistic and implies that the multiplicative model appears to be a bet-
ter candidate than the additive model for engaging in applied economic theory when
intertemporal choice is involved.

5 The optimal consumption path with life annuities

As in Yaari (1965), we now assume that agents have access to actuarial notes issued
by insurance companies or pension funds. Those notes are contingent assets that pay
R(s) as long as the agent is alive, and 0 after her death. If insurance companies refund
themselves in the bond market at the rate r, and if those notes are actuarially fair,
then it is well known that:

R(s) = r + πs(s) (47)

When no bequest motives exist, standard bonds are strictly dominated by life annuities.
Thus the differential constraint of the program can be rewritten as:

∀s ∈ [0, T ] , ȧ(s) = w(s) +R(s)a(s)− c(s) (48)

Proceeding as in section 2, we can deduce.

a(t) +

∫ T

t

w(τ)e
∫ s
t −R(v)dv =

∫ T

t

c(τ)e
∫ s
t −R(v)dvdτ (49)

and
a(s) = a(t) e

∫ s
t −R(v)dv +

∫ s

t

(w(τ)− c(τ)) e
∫ s
τ −R(v)dvdτ (50)

We now deduce the property of the optimal intertemporal consumption profile when
the agent has access to life annuities.

Proposition 4. When the agent has access to life annuities, at each age s, the rate of
growth of the optimal consumption path planned at date t is:

ċt(s)

ct(s)
=

R(s)− θt(s)

γt(s)
=

r + πs(s)− h′(Πt(s)))πt(s)
1−h(Πt(s))

γt(s)
(51)

If the agent is time consistent and has access to life annuities, the rate of growth of the
optimal consumption path planned at date t is:

ċt(s)

ct(s)
=

r + (1− α)πs(s)− β

γt(s)
(52)

20



In the polar case of the additive model of the rate of time preference we have:

ċ+t (s)

c+t (s)
=

r − β

γt(s)
(53)

In the polar case of the multiplicative model of the rate of time preference, we have:

ċ×t (s)

c×t (s)
=

r + (1− α)πs(s)

γt(s)
(54)

Proof: We proceed exactly the same way as in Proposition 1. �
The case of the additive model of the rate of time preference described by equation

(53) corresponds precisely with the main result of Yaari (1965). In this case, when the
agent has access to life annuities the rate of growth of the intertemporal consumption
profile is no longer determined by the conditional probability of dying, and thus is the
same as that of the model with certain life duration. For this reason, life annuities are
considered as offering perfect insurance with the meaning that uncertainty no longer
influences the rate of growth of optimal consumption. This property of Yaari’s model
received many comments and is perhaps at the origin of the fact that the theory
of intertemporal choice of consumption and savings underestimated the role of an
uncertain lefetime. For example, Barro and Friedman (1977) argued that when agent
have access to life insurance/perfect annuities, the uncertainty of survival cannot be
taken as a rationale for discounting.

However, within the rank-dependent utility model developed in this article, the
result of Yaari appears to be a very special case. As shown in Propositon 4, as long as
α ̸= 1, we do not have perfect insurance, i.e. the conditional probability of dying still
determines the rate of growth of the consumption profile. Importantly, note that the
agent is fully rational in those cases and simultaneously fulfills first-order stochastic
dominance and time constancy.13

An important consequence of the results of this section is that we can account
for the consumption hump even when agents have full access to life annuities. As an
example, Figure 3 considers the introduction of life annuities in the calibrated model
of the preceding section and compares the effect of this introduction through the two
polar models of the rate of time preference. Using the same technology as in preceding
section and assuming that agents’ asset cannot have a negative value after retirement,
makes it is possible to draw the consumption function with or without life annuities for
the two polar models. The left superscripts "a" and "na" characterize the consumption
function of the agent whether she has access to life annuities or not.

If we consider the additive model of the rate of time preference, because α is equal
to 1, the introduction of the life annuities and the associated risk premium exactly
offset the hazard rate in the effective rate of time preference. The rate of growth of ac+t
is now constant and positive over all the life cycle. The starting value of consumption
is much lower (nac+t (t) = 0.99,ac+t (t) = .77). It means that, in the additive case, the

13Using Selden (1978)’s ordinal certainty equivalent instead of Rank-Dependent Utility, Moresi
(1999) arrived to a very similar conclusion, in the special case of an iso-elastic per period felicity
function. The rank-dependent utility approach is much more general because it implies no restriction
on the per period felicity function.
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Figure 3: Effect of the introduction of life annuities
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introduction of annuities has a very important effect on savings in the first half of the
life-cycle. Annuities incite the agent to transfer a large mass of consumption in the
second part of the life cycle. Of course having a consumption hump in the case of the
model of an additive rate of time preference is impossible.

We now consider the multiplicative model of the rate of time preference. Observing
the difference in the effect of the introduction of life annuities in this case is striking, and
has two complementary explanations of that. First, because the calibrated level of a is
relatively high (7.9381), the new slope of the consumption function is not that different
from the one without life annuities. Second, the effect on consumption is comparable
with the effect of an increase in the interest rate as analyzed in Figure 2. The difference
is that the interest premium is no longer constant throughout the life cycle but increases
with age. The age of the peak of consumption increases by approximately 1.6 years
(48 → 49.6372). The optimal age of capital depletion increases by approximately the
same amount (68.65 → 70.30).

Again the multiplicative model of the rate of time preference shows interesting
smoothness properties, and is characterized by a hump in consumption that is im-
possible to obtain within the expected utility framework with an additively separable
life-cycle utility function. By dropping the additive separability of the intertemporal
utility functional, Bommier (2013) demonstrated for the first time the possibility of a
hump in consumption when the agent has full access to life annuities. In this article,
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we showed that an other strategy is possible. By keeping an additively separable life
cycle utility functional, but using a more general rank-dependent utility framework for
dealing with an uncertain lifetime, we also demonstrated the possibility of accounting
for the consumption hump.14 In both cases an increase in risk aversion introduced by
the model and demonstrated by (Bommier et al., 2012) accounts for the possibility of
the hump.

6 Conclusion

Generally, conventional wisdom considers exponential discounting and expected utility
as the only models of choice that are compatible with full rationality. If these models
do not fit agents’ actual behavior, then considering alternative descriptive/behavioral
models is legitimate. Believing in the conventional wisdom allows for the deduction
that agents are not rational. Obviously, from a normative point of view, this discussion
has very important implications for policy design.

In this article we built a model of intertemporal choice that uses the rank-dependent
utility theory to deal with intertemporal choice when life duration is uncertain. We
showed, that a subclass of this model is compatible with full rationality, when agents
transform the decumulative distribution of probability using a power function. The
power coefficient of the transformation is then interpreted as a multiplicative rate
of time preference. The model has the same level of complexity as the traditional
expected utility model originally designed by Yaari (1965) and allows for simple and
intuitive interpretations. Using a simple calibration, we showed that this model can be
an interesting candidate for solving some of the puzzles from the empirical literature
(for example, hump-shaped life-cycle consumption function and a too low coefficient
of relative intertemporal resistance). We hope that the example drawn in this article
will attract the attention of theoretical and applied economists and incite them to use
it as an alternative to the standard expected utility/exponential discounting model.

14Building on Bommier (2013), Bommier and Le Grand (2014) consider an altruistic bequest motive
and shows that the demand for annuity is a decreasing function of the lifetime risk aversion. An
extension of the RDU model of this study incorporating such a bequest motive will probably emphasize
the role of α in determining the optimal shares of bond and annuities in the agent’s portfolio.
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Appendix A - The Allais paradox and Rank-Dependent
Utility.

The Allais Paradox (Allais, 1953) is an experimental refutation of expected utility for
representing agents’ preferences under risk. The agent chooses between "lotteries"
that are characterized by a vector of "monetary gains" and the vector of associated
probabilities.

In the first part of the experiment, the agent chooses between two lotteries A1{1$m; 1}
and B1{(0, 1$m, 5$m); (0.01, 0.89, 0.1)}. In the second part of the experiment she
chooses between A2{(0, 1$m); (0.89, 0.11)} and B2{(0, 5$m); (0.9, 0.1)}. When con-
fronted with this experimental choice, a large majority of subjects choose A1 ≻ B1

and B2 ≻ A2, that is a violation of expected utility theory. The easiest way to un-
derstand why, is to use a graphical tool, the "Marschak-Machina" triangle (Machina,
1983). This triangle is used to represent all the lotteries based on a given set of three
ordered outcomes, here (0,1$m,5$m). The horizontal axis represents the probability,
p1, of the "lowest" gain, the vertical axis represents the probability, p3, of the "highest
gain". Since p2 = 1 − p1 − p3, each point belonging to the unity triangle represent a
possible lottery.

Indifference curves can also be drawn in this triangle. If the agent is an expected
utility maximizers, then it is easy to show that, because the Expected Utility model is
linear in probabilities, the indifference curves of the agent are parallel straight lines.

Figure 4-a represents the lotteries of the Allais Paradox in the triangle and an
example of indifference curves of an expected utility maximizer agent. By construction,−−−→
A1B1 =

−−−→
A2B2. If the agent prefers A1 to B1 then the parallel indifference lines have

to be steeper than (A1B1). If the agent prefers B2 to A2, then the parallel indifference
lines have to be flatter than (A2B2). It is of course impossible to have both.

This graphical representation of the paradox enables to understand that to solve
the paradox requires to drop the linearity in probability of the expected utility repre-
sentation. It means that agents not only subjectively transform the outcomes with a
utility function, but also, by a mean or another, the probabilities. Finding the right
way to model how probabilities are transformed has been a long quest. In particu-
lar, a direct transformation of the probability of each particular outcome implies that
decision weights no longer sum to one, and that violation of first-order stochastic dom-
inance is possible. Quiggin (1982)’s anticipated utility model solved the problem for
the first time, with what is today commonly known as the rank-dependent utility model
(Quiggin, 1993). The idea his simple, the agents have to transform the whole proba-
bility distribution. Therefore, the weighting function should apply to the cumulative
distribution function.

When gains are properly ranked (x1 < x2 < ... < xn) the value of the lottery is
given by:

RDU(X,P ) =
n∑

i=1

hi(P )u(xi)

with hi(P ) = w
(∑i

j=1 pj

)
−w

(∑i−1
j=1 pj

)
and w : [0, 1] → [0, 1] with h(0) = 0, h(1) = 1

and h′ > 0.
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It can easily be shown, that, when the probability weighting function is concave,
then the indifference curves in the Marschak-Machina triangle will also be concave.
Figure 4-a shows an example of a solution of the Allais Paradox when the weighting
function is concave. This example is important here, because this study precisely
emphasizes a special case of a concave transformation of the cumulative probability
function.

Rank-dependent utility can also be used for continuous random variables. Let x
be a continuous random variable defined on X, with F the cumulative distribution
function assumed to be C1. Then the rank-dependent model can be written :

RDU(X,F ) =

∫
X

x dh (F (x))

An interesting property of RDU is that the model can also be written using the decu-
mulative distribution function G = 1−F . Let ϕ be the probability weighting function
associated with G, such that h(F ) = 1− ϕ(1− F ). Then it is easy to show that:

RDU(X,F ) =

∫
X

x dh (F (x)) = −
∫
X

x dϕ (G(x))

Figure 4: The Allais paradox in the Marschak-Machina triangle.
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